Certain integral Transforms of the generalized Lommel-Wright function
- 
							
								
							
								S.  Haq
							
							
															
									
									
									sirajulhaq007@gmail.com
									
								
													
							
						 - 
							
								
							
								K.S.  Nisar
							
							
															
									
									
									ksnisar1@gmail.com
									
								
													
							
						 - 
							
								
							
								A.H.  Khan
							
							
															
									
									
									ahkhan.amu@gmail.com
									
								
													
							
						 - 
							
								
							
								 D.L.  Suthar
							
							
															
									
									
									dlsuthar@gmail.com
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000100049Abstract
The aim of this article is to establish some integral transforms of the generalized Lommel-Wright functions, which are expressed in terms of Wright Hypergeometric function. Some integrals involving trigonometric, generalized Bessel and Struve functions are also indicated as special cases of our main results.
Keywords
[2] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc., 4, (2014), 995-1003.
[3] J. Choi, K.S. Nisar, Certain families of integral formulas involving Struve function, Bol. Soc. Parana. Mat., 37(3), (2019), 27-35.
[4] R. D Ìiaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15, (2007), 179-192.
[5] A. Erde Ìlyi,W. Magnus,F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol.2, McGraw-Hill, New York-Toronto-London (1954).
[6] K.S. Gehlot, and J.C. Prajapati, Fractional Calculus of generalized k-wright function, Journal of Fractional Calculus and Applications, 4, (2013), 283-289.
[7] K.S. Gehlot and S.D. Purohit, Fractional Calculus of K-Bessels function , Acta Universitatis Apulensis., 38, (2014), 273-278.
[8] K.B. Kachhia and J.C. Prajapati, On generalized fractional kinetic equations involving general- ized Lommel-Wright functions, Alexandria Engineering Journal (elsevier) 55, (2016), 2953-2957.
[9] J.P. Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10(1),(2007), 59-74.
[10] Y. Luchko, H. Martinez and J. Trujillo, Fractional Fourier transform and some of its applica- tions, Fract. Calc. Appl. Anal., 11, (2008), ,457-470.
[11] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function, Theory and Applications, Springer, New York (2010).
[12] K.S. Nisar, D. Baleanu and M.M. Al Qurashi, Fractional calculus and application of general- ized Struve function, Springer Plus (2016)5:910,DOI 10.1186/s40064-016-2560-3.
[13] K.S. Nisar, G. Rahman, A. Ghaffar, S.A. Mubeen, new class of integrals involving extended Mittag-Leffler function, J. Fract. Calc. Appl., 9 (1), (2018), 222-231.
[14] S.R. Mondal, K.S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc., 32(1), (2017), 47–53
[15] K.S. Nisar, W.A. Khan, Beta type integral operator associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87(1), 117-125(2018).
[16] G. Rahman, A. Ghaffar, K.S. Nisar, S. Mubben, A new class of integrals involving extended Mittag-Leffler function Journal of Fractional Calculus and Applications, 9(1), (2018), 222-231.
[17] K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain Integral transforms of k-Bessel function, Palest. J. Math., 7(1), (2018), 161-166.
[18] K.S. Nisar, D.L. Suthar, S.D. Purohit, M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc.,20(2), (2017), 261-267.
[19] E.D. Rainville, Special Functions, Macmillan, New York, 1960.
[20] A.K. Rathie, A new generalization of generalized hypergeometric function, Matematiche (Catania), 52(2), (1997), 297-310.
[21] H.M. Srivastava, and H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York,Ellis Horwood, Chichester), 1984.
Similar Articles
- D.G. Prakasha, H.G. Nagaraja, On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
 - G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
 - Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
 - E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
 - Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
 - F. Brackx, H. De Schepper, V. Soucek, Differential forms versus multi-vector functions in Hermitean Clifford analysis , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
 - Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 - Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
 - F. Brackx, R. Delanghe, F. Sommen, Differential Forms and/or Multi-vector Functions , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
						
	










