Certain integral Transforms of the generalized Lommel-Wright function
- 
							
								
							
								S.  Haq
							
							
															
									
									
									sirajulhaq007@gmail.com
									
								
													
							
						 - 
							
								
							
								K.S.  Nisar
							
							
															
									
									
									ksnisar1@gmail.com
									
								
													
							
						 - 
							
								
							
								A.H.  Khan
							
							
															
									
									
									ahkhan.amu@gmail.com
									
								
													
							
						 - 
							
								
							
								 D.L.  Suthar
							
							
															
									
									
									dlsuthar@gmail.com
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000100049Abstract
The aim of this article is to establish some integral transforms of the generalized Lommel-Wright functions, which are expressed in terms of Wright Hypergeometric function. Some integrals involving trigonometric, generalized Bessel and Struve functions are also indicated as special cases of our main results.
Keywords
[2] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc., 4, (2014), 995-1003.
[3] J. Choi, K.S. Nisar, Certain families of integral formulas involving Struve function, Bol. Soc. Parana. Mat., 37(3), (2019), 27-35.
[4] R. D Ìiaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15, (2007), 179-192.
[5] A. Erde Ìlyi,W. Magnus,F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol.2, McGraw-Hill, New York-Toronto-London (1954).
[6] K.S. Gehlot, and J.C. Prajapati, Fractional Calculus of generalized k-wright function, Journal of Fractional Calculus and Applications, 4, (2013), 283-289.
[7] K.S. Gehlot and S.D. Purohit, Fractional Calculus of K-Bessels function , Acta Universitatis Apulensis., 38, (2014), 273-278.
[8] K.B. Kachhia and J.C. Prajapati, On generalized fractional kinetic equations involving general- ized Lommel-Wright functions, Alexandria Engineering Journal (elsevier) 55, (2016), 2953-2957.
[9] J.P. Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10(1),(2007), 59-74.
[10] Y. Luchko, H. Martinez and J. Trujillo, Fractional Fourier transform and some of its applica- tions, Fract. Calc. Appl. Anal., 11, (2008), ,457-470.
[11] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function, Theory and Applications, Springer, New York (2010).
[12] K.S. Nisar, D. Baleanu and M.M. Al Qurashi, Fractional calculus and application of general- ized Struve function, Springer Plus (2016)5:910,DOI 10.1186/s40064-016-2560-3.
[13] K.S. Nisar, G. Rahman, A. Ghaffar, S.A. Mubeen, new class of integrals involving extended Mittag-Leffler function, J. Fract. Calc. Appl., 9 (1), (2018), 222-231.
[14] S.R. Mondal, K.S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc., 32(1), (2017), 47–53
[15] K.S. Nisar, W.A. Khan, Beta type integral operator associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87(1), 117-125(2018).
[16] G. Rahman, A. Ghaffar, K.S. Nisar, S. Mubben, A new class of integrals involving extended Mittag-Leffler function Journal of Fractional Calculus and Applications, 9(1), (2018), 222-231.
[17] K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain Integral transforms of k-Bessel function, Palest. J. Math., 7(1), (2018), 161-166.
[18] K.S. Nisar, D.L. Suthar, S.D. Purohit, M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc.,20(2), (2017), 261-267.
[19] E.D. Rainville, Special Functions, Macmillan, New York, 1960.
[20] A.K. Rathie, A new generalization of generalized hypergeometric function, Matematiche (Catania), 52(2), (1997), 297-310.
[21] H.M. Srivastava, and H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York,Ellis Horwood, Chichester), 1984.
Similar Articles
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
 - Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - E. Ballico, Postulation of general unions of lines and +lines in positive characteristic , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - S. Richard, R. Tiedra de Aldecoa, Commutator criteria for strong mixing II. More general and simpler , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
 - N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - P. Jeyanthi, S. Philo, Odd Harmonious Labeling of Some Classes of Graphs , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
 - Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
 
<< < 16 17 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.
						
	










