Naturality and definability II
-
Wilfrid Hodges
wilfrid.hodges@btinternet.com
-
Saharon Shelah
shelah@math.huji.ac.il
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300009Abstract
We regard an algebraic construction as a set-theoretically defined map taking structures A to structures B which have A as a distinguished part, in such a way that any isomorphism from A to A' lifts to an isomorphism from B to B'. In general the construction defines B up to isomorphism over A. A construction is uniformisable if the set-theoretic definition can be given in a form such that for each A the corresponding B is determined uniquely. A construction is natural if restriction from B to its part A always determines a map from the automorphism group of B to that of A which is a split surjective group homomorphism. We prove that there is no transitive model of ZFC (Zermelo-Fraenkel set theory with Choice) in which the uniformisable constructions are exactly the natural ones. We construct a transitive model of ZFC in which every uniformisable construction (with a restriction on the parameters in the formulas defining the construction) is ‘weakly‘ natural. Corollaries are that the construction of algebraic closures of fields and the construction of divisible hulls of abelian groups have no uniformisations definable in ZFC without parameters.
Keywords
[2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge 1990.
[3] H. Friedman, ‘On the naturalness of definable operations‘, Houston J. Math. 5 (1979) 325– 330.
[4] W. Hodges, ‘On the effectivity of some field constructions‘, Proc. London Math. Soc. (3) 32 (1976) 133–162.
[5] W. Hodges, ‘Definability and automorphism groups‘, in Proceedings of International Congress in Logic, Methodology and Philosophy of Science, Oviedo 2003, ed. Petr Hájek et al., King‘s College Publications, London 2005, pp. 107–120; ISBN 1-904987-21-4.
[6] W. Hodges and S. Shelah, ‘Naturality and definability I‘, J. London Math. Soc. 33 (1986) 1–12.
[7] T. Jech, Set theory (Academic Press, New York, 1978).
[8] G. Melles, ‘Classification theory and generalized recursive functions‘, D.Phil. dissertation, University of California at Irvine, 1989.
Most read articles by the same author(s)
- Saharon Shelah, Nɴ-free abelian group with no non-zero homomorphism to ℤ , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Saharon Shelah, On λ strong homogeneity existence for cofinality logic , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
Similar Articles
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Saharon Shelah, On λ strong homogeneity existence for cofinality logic , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Michael Holm, Sum and Difference Compositions in Discrete Fractional Calculus , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Augusto Visintin, About Models of Ferromagnetic Hysteresis , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Burkhard Lenze, Mathematical Foundations of Neural Network Theory , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Joseph E. Bonin, A Brief Introduction to Matroid Theory Through Geometry , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- H. Peter Gumm, State based systems are coalgebras , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- José Sanabria, Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Amalia Gómez, S-paracompactness modulo an ideal , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- B. N. Mandal, Mridula Kanoria, Water Waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.