Bounds for the generalized \( (\Phi;f) \)-mean difference
-
Silvestru Sever Dragomir
sever.dragomir@vu.edu.au
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100001Abstract
In this paper we establish some bounds for the \( (\Phi;f) \)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.
Keywords
M. Alomari and M. Darus, The Hadamard‘s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639–646.
M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965–1975.
W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.
W. W. Breckner and G. Orbán, Continuity Properties of Rationally s-Convex Mappings with vValues in an Ordered Topological Linear Space. Universitatea ”BabeÅŸ-Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Sonin identity, Comp. Math. Modelling, 50 (2005), 599-609.
P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference via the Korkine identity, J. Appl. Math. & Computing, 22 (2006), no. 3, 305–315.
P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of an empirical distribution. Appl. Math. Lett. 19 (2006), no. 3, 283–293.
P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I), Appl. Math. Lett. 20 (2007), no. 7, 782–789.
P. Cerone and S. S. Dragomir, Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II), Comput. Math. Appl. 52 (2006), no. 10-11, 1555–1562.
P. Cerone and S. S. Dragomir, A survey on bounds for the Gini mean difference. Advances in inequalities from probability theory and statistics, 81–111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008.
P. Cerone and S. S. Dragomir, Bounds for the r-weighted Gini mean difference of an empirical distribution. Math. Comput. Modelling 49 (2009), no. 1-2, 180–188.
X.-L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Article. 29.
H. A. David, Gini‘s mean difference rediscovered, Biometrika, 55 (1968), 573.
S. S. Dragomir, Weighted f-Gini mean difference for convex and symmetric functions in linear spaces. Comput. Math. Appl. 60 (2010), no. 3, 734–743.
S. S. Dragomir, Bounds in terms of Gˆateaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420–434.
S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687–696.
S. S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43–49.
S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard‘s inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
S. S. Dragomir, J. PeÄarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335–341.
J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316.
C. Gini, Variabilità e Metabilit`a, contributo allo studia della distribuzioni e relationi statistiche, Studi Economica-Gicenitrici dell‘ Univ. di Coglani, 3 (1912), art 2, 1-158.
G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103–221.
G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron, XLII(3-4) (1984), 25–40.
G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press.
H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100–111.
M. Kendal and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin & Comp. Ltd., London, 1977.
U. S. Kirmaci, M. KlariÄić Bakula, M. E Özdemir and J. PeÄarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26–35.
C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.
E. Set, M. E. Özdemir and M. Z. Sarikaya, New inequalities of Ostrowski‘s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67–82.
Similar Articles
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- M.H. Saleh, D.Sh. Mohammed, Numerical solution of singular and non singular integral equations , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Tetsuo Furumochi, Periodic Solutions of Periodic Difference Equations by Schauder‘s Theorem , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Fethi Soltani, Slim Ben Rejeb, Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.