Extended domain for fifth convergence order schemes
-
Ioannis K. Argyros
iargyros@cameron.edu
-
Santhosh George
sgeorge@nitk.edu.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000100097Abstract
We provide a local as well as a semi-local analysis of a fifth convergence order scheme involving operators valued on Banach space for solving nonlinear equations. The convergence domain is extended resulting a finer convergence analysis for both types. This is achieved by locating a smaller domain included in the older domain leading this way to tighter Lipschitz type functions. These extensions are obtained without additional hypotheses. Numerical examples are used to test the convergence criteria and also to show the superiority for our results over earlier ones. Our idea can be utilized to extend other schemes using inverses in a similar way.
Keywords
I. K. Argyros, “A new convergence theorem for the Jarratt method in Banach space”, Comput. Math. Appl., vol. 36, pp. 13–18, 1998.
I. K. Argyros, Convergence and Application of Newton-Type Iterations, Springer, New York, 2008.
I. K. Argyros, D. Chen, and Q. Qian, “The Jarratt method in Banach space setting”, J. Comput. Appl. Math, vol. 51, pp. 103–106, 1994.
I. K. Argyros, and A. A. Magreñañ, Iterative Methods and their dynamics with applications: A Contemporary Study, CRC Press, 2017.
I. K. Argyros, and S. George, Mathematical modeling for the solution of equations and systems of equations with applications, Volume-IV, Nova Publishes, New York, 2020.
M. Chen, Y. Khan, Q. Wu, and A. Yildirim, “Newton–Kantorovich Convergence Theorem of a Modified Newton‘s Method Under the Gamma-Condition in a Banach Space”, Journal of Optimization Theory and Applications, vol. 157, no. 3, pp. 651–662.
J. L. Hueso, and E. Mart Ìınez, “Semi-local convergence of a family of iterative methods in Banach spaces”, Numer. Algorithms, vol. 67, pp. 365–384, 2014.
A. Kumar, D. K. Gupta, E. Martínez, and S. Singh, “Semi-local convergence of a Steffensen type method under weak Lipschitz conditions in Banach spaces”, J. Comput. Appl. Math., vol. 330, pp. 732–741, 2018.
A. A. MagreÅ„ãn, “Different anomalies in a Jarratt family of iterative root finding methods”, Appl. Math. Comput., vol. 233, pp. 29–38, 2014.
A. A. MagreÅ„ãn, “A new tool to study real dynamics: The convergence plane”, Appl. Math. Comput., vol. 248, pp. 29–38, 2014.
E. Martínez, S. Singh, J. L. Hueso, and D. K. Gupta, “Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces”, Appl. Math. Comput., vol. 281, pp. 252–265, 2016.
W. C. Rheinboldt, “An adaptive continuation process for solving systems of nonlinear equations”, In: Mathematical models and numerical methods (A.N.Tikhonov et al. eds.) pub.3, pp. 129–142, 1977, Banach Center, Warsaw, Poland.
S. Singh, D. K. Gupta, E. Martínez, and J. L. Hueso, “Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces”, Mediterr. J. Math., vol. 13, pp. 4219–4235, 2016.
S. Singh, E. Martínez, A. Kumar, and D. K. Gupta, “Domain of existence and uniqueness for nonlinear Hammerstein integral equations”, Mathematics, vol. 8, no. 3, 2020.
J. F. Traub, Iterative methods for the solution of equations, AMS Chelsea Publishing, 1982.
X. Wang, J. Kou, and C. Gu, “Semi-local convergence of a class of Modified super Halley method in Banach space”, J. Optim. Theory. Appl., vol. 153, pp. 779–793, 2012.
Q. Wu, and Y. Zhao, “Newton-Kantorovich type convergence theorem for a family of new deformed Chebyshev method”, Appl. Math. Comput., vol. 192, pp. 405–412, 2008.
Y. Zhao, and Q. Wu, “Newton-Kantorovich theorem for a family of modified Halley‘s method under Hölder continuity conditions in Banach space”, Appl. Math. Comput., vol. 202, pp. 243–251, 2008.
A. Emad, M. O. Al-Amr, A. Yıldırım, W. A. AlZoubi, “Revised reduced differential transform method using Adomian‘s polynomials with convergence analysis”, Mathematics in Engineering, Science & Aerospace (MESA), vol. 11, no. 4, pp. 827–840, 2020.
Most read articles by the same author(s)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
Similar Articles
- Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Naoyuki Koike, Examples of a complex hyperpolar action without singular orbit , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











