Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves
-
H. Özlem Güney
ozlemg@dicle.edu.tr
-
G. Murugusundaramoorthy
gmsmoorthy@yahoo.com
-
K. Vijaya
kvijaya@vit.ac.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200299Abstract
In this paper we define the subclass \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) of the class \(\Sigma\) of bi-univalent functions defined in the unit disk, called \(\lambda\)-bi-pseudo-starlike, with respect to symmetric points, related to shell-like curves connected with Fibonacci numbers. We determine the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions \(f\in\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z)).\) Further we determine the Fekete-Szegö result for the function class \(\mathcal{PSL}^\lambda_{s,\Sigma}(\alpha,\tilde{p}(z))\) and for the special cases \(\alpha=0\), \(\alpha=1\) and \(\tau =-0.618\) we state corollaries improving the initial Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\).
Keywords
K. O. Babalola, “On λ-pseudo-starlike functions”, J. Class. Anal., vol. 3, no. 2, pp. 137–147, 2013.
D. A. Brannan, J. Clunie and W. E. Kirwan, “Coefficient estimates for a class of star-like functions”, Canad. J. Math., vol. 22, no. 3, pp. 476-485, 1970.
D. A. Brannan and T. S. Taha, “On some classes of bi-univalent functions”, Studia Univ. Babes-Bolyai Math., vol. 31, no. 2, pp. 70-77, 1986.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
S. Joshi, S. Joshi and H. Pawar, “On some subclasses of bi-univalent functions associated with pseudo-starlike function”, J. Egyptian Math. Soc., vol. 24, no. 4, pp. 522-525, 2016.
J. Dziok, R. K. Raina and J. Sokól, “On α−convex functions related to a shell-like curve connected with Fibonacci numbers”, Appl. Math. Comput., vol. 218, no. 3, pp. 996–1002, 2011.
M. Fekete and G. Szegö, “Eine Bemerkung über ungerade Schlichte Funktionen”, J. London Math. Soc., vol. 8, no. 2, pp. 85-89, 1933.
S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, vol. 225, New York: Marcel Dekker, 2000.
M. Lewin, “On a coefficient problem for bi-univalent functions”, Proc. Amer. Math. Soc., vol. 18, pp. 63-68, 1967.
Ch. Pommerenke, Univalent Functions, Math. Math, Lehrbucher, Vandenhoeck and Ruprecht, Göttingen, 1975.
R. K. Raina and J. Sokól, “Fekete-Szegö problem for some starlike functions related to shell- like curves”, Math. Slovaca, vol. 66, no. 1, pp. 135-140, 2016.
V. Ravichandran, “Starlike and convex functions with respect to conjugate points”, Acta Math. Acad. Paedagog. Nyházi. (N.S.), vol. 20, no. 1, pp. 31-37, 2004.
K. Sakaguchi, “On a certain univalent mapping”, J. Math. Soc. Japan, vol. 11, no. 1, pp. 72-75, 1959.
J. Sokól, “On starlike functions connected with Fibonacci numbers”, Zeszyty Nauk. Politech. Rzeszowskiej Mat, vol. 23, pp. 111-116, 1999.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, “Certain subclasses of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 23, no. 10, pp. 1188-1192, 2010.
Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, “Coefficient estimates for a certain subclass of analytic and bi-univalent functions”, Appl. Math. Lett., vol. 25, no. 6, pp. 990-994, 2012.
X.-F. Li and A.-P. Wang, “Two new subclasses of bi-univalent functions”, Int. Math. Forum, vol. 7, no. 30, pp. 1495-1504, 2012.
G. Wang, C. Y. Gao and S. M. Yuan, “On certain subclasses of close-to-convex and quasi-convex functions with respect to k−symmetric points”, J. Math. Anal. Appl., vol. 322, no. 1, pp. 97–106, 2006.
P. Zaprawa, “On the Fekete-Szegö problem for classes of bi-univalent functions”, Bull. Belg. Math. Soc. Simon Stevin, vol. 21, no. 1, pp. 169-178, 2014.
Similar Articles
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Hendrik Van Maldeghem, Magali Victoor, On Severi varieties as intersections of a minimum number of quadrics , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.