Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models
-
Homero G. Díaz-Marín
homero.diaz@umich.mx
-
Osvaldo Osuna
osvaldo.osuna@umich.mx
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300343Abstract
We prove that for certain polynomial differential equations in the plane arising from predator-prey type III models with generalized rational functional response, any algebraic solution should be a rational function. As a consequence, limit cycles, which are unique for these dynamical systems, are necessarily trascendental ovals. We exemplify these findings by showing a numerical simulation within a system arising from zooplankton-phytoplankton dynamics.
Keywords
D. Barrios-O‘Neill, J. T. A. Dick, M. C. Emmerson, A. Ricciardi and H. J. MacIsaac, “Predator-free space, functional responses and biological invasions”, Functional Ecology, vol. 29, no. 3, pp. 377–384, 2015.
J. Cano, “An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms”, Ann. Inst. Fourier (Grenoble), vol. 43, no. 1, pp. 125–142, 1993.
M. V. Demina, “Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems”. Phys. Lett. A, vol. 382, no. 20, pp. 353–1360, 2018.
M. V. Demina, “Invariant algebraic curves for liénard dynamical systems revisited”, Appl. Math. Lett., vol. 84, pp. 42–48, 2018.
A. Ferragut and A. Gasull. “Non-algebraic oscillations for predator-prey models”, Publ. Mat., vol. 58, suppl., pp. 195–207, 2014.
J. Giné and M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, vol. 19, no. 8, pp. 1939–1950, 2006.
J. Giné and J. Llibre, “Strongly formal Weierstrass non-integrability for polynomial differential systems in C2”, Electron. J. Qual. Theory Differ. Equ., no. 1, pp. 1–16, 2020.
J. Giné and J. Llibre, “Formal Weierstrass nonintegrability criterion for some classes of polynomial differential systems in C2”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., vol. 30, no. 4, 7 pages, 2020.
M. Hayashi, “On polynomial Li Ìenard systems which have invariant algebraic curves”, Funkcial. Ekvac., vol. 39, no. 3, pp. 403–408, 1996.
E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1976.
E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. Differential Equations, vol. 115, no. 1, pp. 146–152, 1995.
L. A. Real, “The kinetics of functional response”, The American Naturalist, vol. 111, no. 978, pp. 289–300, 1977.
B. Rosenbaum and B. C. Rall, “Fitting functional responses: Direct parameter estimation by simulating differential equations”, Methods in Ecology and Evolution, vol. 9, no. 10, pp. 2076–2090, 2018.
V. A. Ryabchenko, M. J. R. Fasham, B. A. Kagan and E. E. Popova, “What causes short-term oscillations in ecosystem models of the ocean mixed layer?”, Journal of Marine Systems, vol. 13, no. 1, pp. 33–50, 1997.
J. Sugie, “Uniqueness of limit cycles in a predator-prey system with Holling-type functional response”, Quart. Appl. Math., vol. 58, no. 3, pp. 577–590, 2000.
J. Sugie, R. Kohno, and R. Miyazaki, “On a predator-prey system of Holling type”, Proc. Amer. Math. Soc., vol. 125, no. 7, pp. 2041–2050, 1997.
R. K. Upadhyay and S. R. K. Iyengar, Introduction to Mathematical Modeling and Chaotic Dynamics, CRC Press, 2013.
Similar Articles
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Rubén A. Hidalgo, A sufficiently complicated noded Schottky group of rank three , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- H. Özlem Güney, G. Murugusundaramoorthy, K. Vijaya, Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
<< < 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.