On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds
-
Masaya Kawamura
kawamura-m@t.kagawa-nct.ac.jp
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0239Abstract
We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an \(a\) \(priori\) \(L^\infty\) estimate for a smooth solution of these equations.
Keywords
L. Chen, “Hessian equations of Krylov type on Kähler manifolds”, preprint, arXiv:2107.12035v3, 2021.
J. Chu, V. Tosatti and B. Weinkove, “The Monge-Ampère equation for non-integrable almost complex structures”, J. Eur. Math. Soc., vol. 21, no. 7, pp. 1949–1984, 2019.
P. Gauduchon, “Le théorème de l‘excentricité nulle”, C. R. Acad. Sci. Paris S Ìer. A-B, vol. 285, no. 5, pp. A387–A390, 1977.
A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math. (2), vol. 65, pp. 391–404, 1957.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds”, J. Geom. Anal., vol. 26, no. 3, pp. 2459–2473, 2016.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate”, Comm. Pure Appl. Math., vol. 70, no. 1, pp. 172–199, 2017.
V. Tosatti and B. Weinkove, “Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds”, Asian J. Math., vol. 14, pp. 19–40, 2010.
V. Tosatti and B. Weinkove, “The complex Monge-Ampère equation on compact Hermitian manifolds”, J. Amer. Math. Soc., vol. 23, pp. 1187–1195, 2010.
Q. Tu and N. Xiang, “The Dirichlet problem for mixed Hessian equations on Hermitian manifolds”, preprint, arXiv:2201.05030v1, 2022.
L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011.
C.-J. Yu, “Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds”, Acta Math. Sin., vol. 31, no. 1, pp. 61–70, 2015.
J. Zhang, “Monge-Ampère type equations on almost Hermitian manifolds”, preprint, arXiv:2101.00380, 2022.
T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018.
Most read articles by the same author(s)
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
Similar Articles
- Juan Armando Parra, Israel Morales, Aspectos topológicos de las simetrías en superficies , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Raoudha Laffi, Some inequalities associated with a partial differential operator , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Erhan Pişkin, Ayşe Fidan, Jorge Ferreira, Mohammad Shahrouzi, Blow-up and global existence of solutions for a higher-order reaction diffusion equation with singular potential , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










