On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds
-
Masaya Kawamura
kawamura-m@t.kagawa-nct.ac.jp
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0239Abstract
We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an \(a\) \(priori\) \(L^\infty\) estimate for a smooth solution of these equations.
Keywords
L. Chen, “Hessian equations of Krylov type on Kähler manifolds”, preprint, arXiv:2107.12035v3, 2021.
J. Chu, V. Tosatti and B. Weinkove, “The Monge-Ampère equation for non-integrable almost complex structures”, J. Eur. Math. Soc., vol. 21, no. 7, pp. 1949–1984, 2019.
P. Gauduchon, “Le théorème de l‘excentricité nulle”, C. R. Acad. Sci. Paris S Ìer. A-B, vol. 285, no. 5, pp. A387–A390, 1977.
A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math. (2), vol. 65, pp. 391–404, 1957.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds”, J. Geom. Anal., vol. 26, no. 3, pp. 2459–2473, 2016.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate”, Comm. Pure Appl. Math., vol. 70, no. 1, pp. 172–199, 2017.
V. Tosatti and B. Weinkove, “Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds”, Asian J. Math., vol. 14, pp. 19–40, 2010.
V. Tosatti and B. Weinkove, “The complex Monge-Ampère equation on compact Hermitian manifolds”, J. Amer. Math. Soc., vol. 23, pp. 1187–1195, 2010.
Q. Tu and N. Xiang, “The Dirichlet problem for mixed Hessian equations on Hermitian manifolds”, preprint, arXiv:2201.05030v1, 2022.
L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011.
C.-J. Yu, “Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds”, Acta Math. Sin., vol. 31, no. 1, pp. 61–70, 2015.
J. Zhang, “Monge-Ampère type equations on almost Hermitian manifolds”, preprint, arXiv:2101.00380, 2022.
T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018.
Most read articles by the same author(s)
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
Similar Articles
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Adara M. Blaga, Manoj Ray Bakshi, Kanak Kanti Baishya, Hyper generalized pseudo \(Q\)-symmetric semi-Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Chia-chi Tung, Pier Domenico Lamberti, On Rellich‘s Lemma, the Poincaré inequality, and Friedrichs extension of an operator on complex spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
<< < 14 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.











