On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds
-
Masaya Kawamura
kawamura-m@t.kagawa-nct.ac.jp
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0239Abstract
We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an \(a\) \(priori\) \(L^\infty\) estimate for a smooth solution of these equations.
Keywords
L. Chen, “Hessian equations of Krylov type on Kähler manifolds”, preprint, arXiv:2107.12035v3, 2021.
J. Chu, V. Tosatti and B. Weinkove, “The Monge-Ampère equation for non-integrable almost complex structures”, J. Eur. Math. Soc., vol. 21, no. 7, pp. 1949–1984, 2019.
P. Gauduchon, “Le théorème de l‘excentricité nulle”, C. R. Acad. Sci. Paris S Ìer. A-B, vol. 285, no. 5, pp. A387–A390, 1977.
A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math. (2), vol. 65, pp. 391–404, 1957.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds”, J. Geom. Anal., vol. 26, no. 3, pp. 2459–2473, 2016.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate”, Comm. Pure Appl. Math., vol. 70, no. 1, pp. 172–199, 2017.
V. Tosatti and B. Weinkove, “Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds”, Asian J. Math., vol. 14, pp. 19–40, 2010.
V. Tosatti and B. Weinkove, “The complex Monge-Ampère equation on compact Hermitian manifolds”, J. Amer. Math. Soc., vol. 23, pp. 1187–1195, 2010.
Q. Tu and N. Xiang, “The Dirichlet problem for mixed Hessian equations on Hermitian manifolds”, preprint, arXiv:2201.05030v1, 2022.
L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011.
C.-J. Yu, “Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds”, Acta Math. Sin., vol. 31, no. 1, pp. 61–70, 2015.
J. Zhang, “Monge-Ampère type equations on almost Hermitian manifolds”, preprint, arXiv:2101.00380, 2022.
T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018.
Most read articles by the same author(s)
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
Similar Articles
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- U. Traoré, Entropy solution for a nonlinear parabolic problem with homogeneous Neumann boundary condition involving variable exponents , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.











