On Severi varieties as intersections of a minimum number of quadrics
-
Hendrik Van Maldeghem
hendrik.vanmaldeghem@ugent.be
-
Magali Victoor
magali.victoor@ugent.be
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0307Abstract
Let \({\mathscr{V}}\) be a variety related to the second row of the Freudenthal-Tits Magic square in \(N\)-dimensional projective space over an arbitrary field. We show that there exist \(M\leq N\) quadrics intersecting precisely in \({\mathscr{V}}\) if and only if there exists a subspace of projective dimension \(N-M\) in the secant variety disjoint from the Severi variety. We present some examples of such subspaces of relatively large dimension. In particular, over the real numbers we show that the Cartan variety (related to the exceptional group \({E_6}\)\((\mathbb R)\)) is the set-theoretic intersection of 15 quadrics.
Keywords
M. Aschbacher, “The 27-dimensional module for E6. I.”, Invent. Math., vol. 89, no. 1, pp. 159–195, 1987.
S. G. Barwick, W.-A. Jackson and P. Wild, “The Bose representation of PG(2, q3) in PG(8, q)”, Australas. J. Combin., vol. 79, pp. 31–54, 2021.
M. Brion, “Représentations exceptionelles des groupes semi-simple”, Ann. Sci. École Norm. Sup. (4), vol. 18, no. 2, pp. 345–387, 1985.
A. M. Cohen, Diagram Geometry, related to Lie algebras and groups, book in preparation, see http://arpeg.nl/wp-content/uploads/2020/09/book2n.pdf.
D. Eisenbud and E. G. Evans, “Every algebraic set in n-space is the intersection of n hyper-surfaces”, Invent. Math., vol. 19, pp. 107–112, 1973.
J. W. P. Hirschfeld and J. A. Thas, General Galois geometries, Springer Monographs in Mathematics, London: Springer-Verlag, 2016.
W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., vol. 84, no. 4, pp. 605–608, 1982.
S. E. Payne and J. A. Thas, Finite generalized quadrangles, EMS Series of Lectures in Mathematics, Zu ̈rich: European Mathematical Society (EMS), 2009.
J. Schillewaert and H. Van Maldeghem, “On the varieties of the second row of the split Freudenthal-Tits magic square”, Ann. Inst. Fourier (Grenoble), vol. 67, no. 6, pp. 2265–2305, 2017.
A. Ramanathan, “Equations defining Schubert varieties and Frobenius splitting of diagonals”, Inst. Hautes Études Sci. Publ. Math., no. 65, pp. 61–90, 1987.
H. Van Maldeghem and M. Victoor, “Some combinatorial and geometric constructions of spherical buildings” in Surveys in combinatorics 2019, London Math. Soc. Lecture Note Ser., 456, Cambridge: Cambridge Univ. Press, pp. 237–265, 2019.
Similar Articles
- Xavier Antoine, Christophe Besse, Jérémie Szeftel, Towards accurate artificial boundary conditions for nonlinear PDEs through examples , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Paolo Piccione, Daniel V. Tausk, Topological Methods for ODE's: Symplectic Differential Systems , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Bai-Ni Guo, Three proofs of an identity involving derivatives of a positive definite matrix and its determinant , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- V´Ä±ctor Ayala, Marcos M. Diniz, Jos´e C.P. Lima, Jos´e M.M. Veloso, Ivan Tribuzy, Wave Front Sets Singularities of Homogeneous Sub-Riemannian Three Dimensional Manifolds , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Kazuo Nishimura, John Stachurski, Discrete Time Models in Economic Theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- S. K. Yadav, S. K. Chaubey, D. L. Suthar, Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Victor P. Palamodov, One century of Minkowski's paper: reconstruction from integral geometry data , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Oliver Bültel, On the supersingular loci of quaternionic Siegel space , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.