Several inequalities for an integral transform of positive operators in Hilbert spaces with applications
-
S. S. Dragomir
sever.dragomir@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.195Abstract
For a continuous and positive function \(w\left( \lambda \right) ,\) \(\lambda>0\) and \(\mu \) a positive measure on \((0,\infty )\) we consider the following Integral Transform
\[ \begin{equation*} \mathcal{D}\left( w,\mu \right) \left( T\right) :=\int_{0}^{\infty }w\left(\lambda \right) \left( \lambda +T\right)^{-1}d\mu \left( \lambda \right) , \end{equation*} \]
where the integral is assumed to exist for \(T\) a postive operator on a complex Hilbert space \(H\).
We show among others that, if \( \beta \geq A \geq \alpha > 0, \, B > 0 \) with \( M \geq B-A \geq m > 0 \) for some constants \( \alpha, \beta, m, M \), then
\[ \begin{align*} 0 & \leq \frac{m^{2}}{M^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \\ & \leq \frac{m^{2}}{M}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \left( B-A\right)^{-1} \\ & \leq \mathcal{D}\left( w,\mu \right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right) \\ & \leq \frac{M^{2}}{m}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1} \\ & \leq \frac{M^{2}}{m^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right]. \end{align*} \]
Some examples for operator monotone and operator convex functions as well as for integral transforms \(\mathcal{D}\left( \cdot ,\cdot \right) \) related to the exponential and logarithmic functions are also provided.
Keywords
Mathematics Subject Classification:
R. Bhatia, Matrix analysis. New York, NY, USA: Springer-Verlag, 1997.
J. I. Fujii and Y. Seo, “On parametrized operator means dominated by power ones”, Sci. Math., vol. 1, no. 3, pp. 301–306, 1998.
T. Furuta, “Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation”, Linear Algebra Appl., vol. 429, no. 5–6, pp. 972–980, 2008.
T. Furuta, “Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on [0, ∞)”, J. Math. Inequal., vol. 9, no. 1, pp. 47–52, 2015.
E. Heinz, “Beiträge zur Störungstheorie der Spektralzerlegun”, Math. Ann., vol. 123, pp. 415–438, 1951.
K. Löwner, “Über monotone Matrixfunktionen”, Math. Z., vol. 38, no. 1, pp. 177–216, 1931.
M. S. Moslehian and H. Najafi, “An extension of the Löwner-Heinz inequality”, Linear Algebra Appl., vol. 437, no. 9, pp. 2359–2365, 2012.
H. Zuo and G. Duan, “Some inequalities of operator monotone functions”, J. Math. Inequal., vol. 8, no. 4, pp. 777–781, 2014.
Most read articles by the same author(s)
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Wolfgang Rump, Non-Commuting Numbers and Functions , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Paul W. Eloe, Positive Operators and Maximum Principles for Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Pertti Mattila, Search for geometric criteria for removable sets of bounded analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- A.A. Martynyuk, Matrix Liapunov‘s Functions Method and Stability Analysis of Continuous Systems , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Abderemane Morame, Françoise Truc, Accuracy on eigenvalues for a Schrödinger operator with a degenerate potential in the semi-classical limit , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- H. Bueno, Functions of Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- W. Tutschke, Interactions between partial differential equations and generalized analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Trueman MacHenry, From Fibonacci Numbers to Symmetric Functions , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 10 11 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. S. Dragomir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.