Several inequalities for an integral transform of positive operators in Hilbert spaces with applications
-
S. S. Dragomir
sever.dragomir@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.195Abstract
For a continuous and positive function \(w\left( \lambda \right) ,\) \(\lambda>0\) and \(\mu \) a positive measure on \((0,\infty )\) we consider the following Integral Transform
\[ \begin{equation*} \mathcal{D}\left( w,\mu \right) \left( T\right) :=\int_{0}^{\infty }w\left(\lambda \right) \left( \lambda +T\right)^{-1}d\mu \left( \lambda \right) , \end{equation*} \]
where the integral is assumed to exist for \(T\) a postive operator on a complex Hilbert space \(H\).
We show among others that, if \( \beta \geq A \geq \alpha > 0, \, B > 0 \) with \( M \geq B-A \geq m > 0 \) for some constants \( \alpha, \beta, m, M \), then
\[ \begin{align*} 0 & \leq \frac{m^{2}}{M^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \\ & \leq \frac{m^{2}}{M}\left[ \mathcal{D}\left( w,\mu \right) \left(\beta\right) - \mathcal{D}\left( w,\mu \right) \left(M+\beta\right) \right] \left( B-A\right)^{-1} \\ & \leq \mathcal{D}\left( w,\mu \right) \left(A\right) - \mathcal{D}\left(w,\mu\right) \left(B\right) \\ & \leq \frac{M^{2}}{m}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right] \left(B-A\right)^{-1} \\ & \leq \frac{M^{2}}{m^{2}}\left[ \mathcal{D}\left( w,\mu \right) \left(\alpha\right) - \mathcal{D}\left( w,\mu \right) \left(m+\alpha\right) \right]. \end{align*} \]
Some examples for operator monotone and operator convex functions as well as for integral transforms \(\mathcal{D}\left( \cdot ,\cdot \right) \) related to the exponential and logarithmic functions are also provided.
Keywords
Mathematics Subject Classification:
R. Bhatia, Matrix analysis. New York, NY, USA: Springer-Verlag, 1997.
J. I. Fujii and Y. Seo, “On parametrized operator means dominated by power ones”, Sci. Math., vol. 1, no. 3, pp. 301–306, 1998.
T. Furuta, “Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation”, Linear Algebra Appl., vol. 429, no. 5–6, pp. 972–980, 2008.
T. Furuta, “Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on [0, ∞)”, J. Math. Inequal., vol. 9, no. 1, pp. 47–52, 2015.
E. Heinz, “Beiträge zur Störungstheorie der Spektralzerlegun”, Math. Ann., vol. 123, pp. 415–438, 1951.
K. Löwner, “Über monotone Matrixfunktionen”, Math. Z., vol. 38, no. 1, pp. 177–216, 1931.
M. S. Moslehian and H. Najafi, “An extension of the Löwner-Heinz inequality”, Linear Algebra Appl., vol. 437, no. 9, pp. 2359–2365, 2012.
H. Zuo and G. Duan, “Some inequalities of operator monotone functions”, J. Math. Inequal., vol. 8, no. 4, pp. 777–781, 2014.
Most read articles by the same author(s)
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- George A. Anastassiou, Converse Fractional Opial Inequalities for Several Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Rupali Shinde, Christophe Chesneau, Nitin Darkunde, Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. S. Dragomir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.