Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform
-
Fethi Soltani
fethi.soltani@fst.utm.tn
-
Slim Ben Rejeb
slimbenrejeb15@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.321Abstract
In this work, by combining Carlson-type and Nash-type inequalities for the Weinstein transform \(\mathscr{F}_W\) on \(\mathbb{K}=\mathbb{R}^{d-1}\times[0,\infty)\), we show Laeng-Morpurgo-type uncertainty inequalities. We establish also local-type uncertainty inequalities for the Weinstein transform \(\mathscr{F}_W\), and we deduce a Heisenberg-Pauli-Weyl-type inequality for this transform.
Keywords
Mathematics Subject Classification:
N. Ben Salem, “Inequalities related to spherical harmonics associated with the Weinstein operator”, Integral Transforms Spec. Funct., vol. 34, no. 1, pp. 41–64, 2023. doi: 10.1080/10652469.2022.2087063
N. Ben Salem, “Shannon, Sobolev and uncertainty inequalities for the Weinstein transform”, Integral Transforms Spec. Funct., vol. 34, no. 8, pp. 589–613, 2023. doi: 10.1080/10652469.2022.2164277
N. Ben Salem and A. R. Nasr, “Heisenberg-type inequalities for the Weinstein operator”, Integral Transforms Spec. Funct., vol. 26, no. 9, pp. 700–718, 2015. doi: 10.1080/10652469.2015.1038531
E. Laeng and C. Morpurgo, “An uncertainty inequality involving L1-norms”, Proc. Amer. Math. Soc., vol. 127, no. 12, pp. 3565–3572, 1999. doi: 10.1090/S0002-9939-99-05022-4
K. Mehrez, “Paley-Wiener theorem for the Weinstein transform and applications”, Integral Transforms Spec. Funct., vol. 28, no. 8, pp. 616–628, 2017. doi: 10.1080/10652469.2017.1334652
H. Mejjaoli and M. Salhi, “Uncertainty principles for the Weinstein transform”, Czechoslovak Math. J., vol. 61, no. 4, pp. 941–974, 2011. doi: 10.1007/s10587-011-0061-7
C. Morpurgo, “Extremals of some uncertainty inequalities”, Bull. London Math. Soc., vol. 33, no. 1, pp. 52–58, 2001. doi: 10.1112/blms/33.1.52
A. R. Naji and A. H. Halbbub, “Variations on uncertainty principle inequalities for Weinstein operator”, University of Aden Journal of Natural and Applied Sciences, vol. 23, no. 2, pp. 479–487, 2019. doi: 10.47372/uajnas.2019.n2.a18
J. F. Price, “Inequalities and local uncertainty principles”, J. Math. Phys., vol. 24, no. 7, pp. 1711–1714, 1983. doi: 10.1063/1.525916
J. F. Price, “Sharp local uncertainty inequalities”, Studia Math., vol. 85, no. 1, pp. 37–45, 1987. doi: 10.4064/sm-85-1-37-45
A. Saoudi, “A variation of Lp uncertainty principles in Weinstein setting”, Indian J. Pure Appl. Math., vol. 51, no. 4, pp. 1697–1712, 2020. doi: 10.1007/s13226-020-0490-9
F. Soltani, “Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd”, Bull. Aust. Math. Soc., vol. 82, no. 2, pp. 316–325, 2013. doi: 10.1017/S0004972712000780
F. Soltani, “A variety of uncertainty principles for the Dunkl transform on Rd”, Asian-Eur. J. Math., vol. 14, no. 5, Art. ID 2150077, 2021. doi: 10.1142/S1793557121500777
Most read articles by the same author(s)
- Fethi Soltani, Extremal functions and best approximate formulas for the Hankel-type Fock space , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, \(L^p\) local uncertainty inequality for the Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
Similar Articles
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Youssef N. Raffoul, Boundedness and stability in nonlinear systems of differential equations using a modified variation of parameters formula , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Mohammad Farhan, Edy Tri Baskoro, Further results on the metric dimension and spectrum of graphs , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
<< < 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 F. Soltani et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










