A note on the structure of the zeros of a polynomial and Sendov's conjecture
-
G. M. Sofi
gmsofi@cukashmir.ac.in
-
W. M. Shah
wali@cukashmir.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.515Abstract
In this note we prove a result that highlights an interesting connection between the structure of the zeros of a polynomial \(p(z)\) and Sendov's conjecture.
Keywords
Mathematics Subject Classification:
B. D. Bojanov, Q. I. Rahman, and J. Szynal, “On a conjecture of Sendov about the critical points of a polynomial,” Math. Z., vol. 190, no. 2, pp. 281–285, 1985, doi: 10.1007/BF01160464.
I. Borcea, “On the Sendov conjecture for polynomials with at most six distinct roots,” J. Math. Anal. Appl., vol. 200, no. 1, pp. 182–206, 1996, doi: 10.1006/jmaa.1996.0198.
J. E. Brown and G. Xiang, “Proof of the Sendov conjecture for polynomials of degree at most eight,” J. Math. Anal. Appl., vol. 232, no. 2, pp. 272–292, 1999, doi: 10.1006/jmaa.1999.6267.
T. P. Chalebgwa, “Sendov’s conjecture: a note on a paper of Dégot,” Anal. Math., vol. 46, no. 3, pp. 447–463, 2020, doi: 10.1007/s10476-020-0050-x.
J. Dégot, “Sendov conjecture for high degree polynomials,” Proc. Amer. Math. Soc., vol. 142, no. 4, pp. 1337–1349, 2014, doi: 10.1090/S0002-9939-2014-11888-0.
W. K. Hayman, Research problems in function theory. The Athlone Press [University of London], London, 1967.
P. Kumar, “A remark on Sendov conjecture,” C. R. Acad. Bulgare Sci., vol. 71, no. 6, pp. 731–734, 2018.
M. J. Miller, “Maximal polynomials and the Ilieff-Sendov conjecture,” Trans. Amer. Math. Soc., vol. 321, no. 1, pp. 285–303, 1990, doi: 10.2307/2001603.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002, vol. 26.
Z. Rubinstein, “On a problem of Ilyeff,” Pacific J. Math., vol. 26, pp. 159–161, 1968.
G. Schmeisser, “Bemerkungen zu einer Vermutung von Ilieff.” Math Z., vol. 111, pp. 121–125, 1969, doi: 10.1007/BF01111192.
G. Schmeisser, “Zur Lage der kritischen Punkte eines Polynoms,” Rendiconti del Seminario Matematico della Università di Padova, vol. 46, pp. 405–415, 1971.
G. M. Sofi and W. M. Shah, “On Sendov’s conjecture,” Rend. Circ. Mat. Palermo (2), vol. 72, no. 1, pp. 493–497, 2023, doi: 10.1007/s12215-021-00690-y.
G. M. Sofi, S. A. Ahanger, and R. B. Gardner, “Some classes of polynomials satisfying Sendov’s conjecture,” Studia Sci. Math. Hungar., vol. 57, no. 4, pp. 436–443, 2020, doi: 10.1556/012.2020.57.4.1475.
T. Tao, “Sendov’s conjecture for sufficiently-high-degree polynomials,” Acta Math., vol. 229, no. 2, pp. 347–392, 2022.
Similar Articles
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Paul A. Milewski, The Forced Korteweg–de Vries Equation as a Model for Waves Generated by Topography , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. M. Sofi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










