A note on the structure of the zeros of a polynomial and Sendov's conjecture
-
G. M. Sofi
gmsofi@cukashmir.ac.in
-
W. M. Shah
wali@cukashmir.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.515Abstract
In this note we prove a result that highlights an interesting connection between the structure of the zeros of a polynomial \(p(z)\) and Sendov's conjecture.
Keywords
Mathematics Subject Classification:
B. D. Bojanov, Q. I. Rahman, and J. Szynal, “On a conjecture of Sendov about the critical points of a polynomial,” Math. Z., vol. 190, no. 2, pp. 281–285, 1985, doi: 10.1007/BF01160464.
I. Borcea, “On the Sendov conjecture for polynomials with at most six distinct roots,” J. Math. Anal. Appl., vol. 200, no. 1, pp. 182–206, 1996, doi: 10.1006/jmaa.1996.0198.
J. E. Brown and G. Xiang, “Proof of the Sendov conjecture for polynomials of degree at most eight,” J. Math. Anal. Appl., vol. 232, no. 2, pp. 272–292, 1999, doi: 10.1006/jmaa.1999.6267.
T. P. Chalebgwa, “Sendov’s conjecture: a note on a paper of Dégot,” Anal. Math., vol. 46, no. 3, pp. 447–463, 2020, doi: 10.1007/s10476-020-0050-x.
J. Dégot, “Sendov conjecture for high degree polynomials,” Proc. Amer. Math. Soc., vol. 142, no. 4, pp. 1337–1349, 2014, doi: 10.1090/S0002-9939-2014-11888-0.
W. K. Hayman, Research problems in function theory. The Athlone Press [University of London], London, 1967.
P. Kumar, “A remark on Sendov conjecture,” C. R. Acad. Bulgare Sci., vol. 71, no. 6, pp. 731–734, 2018.
M. J. Miller, “Maximal polynomials and the Ilieff-Sendov conjecture,” Trans. Amer. Math. Soc., vol. 321, no. 1, pp. 285–303, 1990, doi: 10.2307/2001603.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002, vol. 26.
Z. Rubinstein, “On a problem of Ilyeff,” Pacific J. Math., vol. 26, pp. 159–161, 1968.
G. Schmeisser, “Bemerkungen zu einer Vermutung von Ilieff.” Math Z., vol. 111, pp. 121–125, 1969, doi: 10.1007/BF01111192.
G. Schmeisser, “Zur Lage der kritischen Punkte eines Polynoms,” Rendiconti del Seminario Matematico della Università di Padova, vol. 46, pp. 405–415, 1971.
G. M. Sofi and W. M. Shah, “On Sendov’s conjecture,” Rend. Circ. Mat. Palermo (2), vol. 72, no. 1, pp. 493–497, 2023, doi: 10.1007/s12215-021-00690-y.
G. M. Sofi, S. A. Ahanger, and R. B. Gardner, “Some classes of polynomials satisfying Sendov’s conjecture,” Studia Sci. Math. Hungar., vol. 57, no. 4, pp. 436–443, 2020, doi: 10.1556/012.2020.57.4.1475.
T. Tao, “Sendov’s conjecture for sufficiently-high-degree polynomials,” Acta Math., vol. 229, no. 2, pp. 347–392, 2022.
Similar Articles
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- H. Özlem Güney, G. Murugusundaramoorthy, K. Vijaya, Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Raúl Cordovil, David Forge, Gr¨obner and diagonal bases in Orlik-Solomon type algebras , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Najoua Gamara, Ali Ben Ahmed, Aribi Amine, A New proof of the CR Pohožaev Identity and related Topics , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Shrabani Banerjee, Binayak S. Choudhury, Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Paul A. Milewski, The Forced Korteweg–de Vries Equation as a Model for Waves Generated by Topography , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. M. Sofi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.