A note on the structure of the zeros of a polynomial and Sendov's conjecture
-
G. M. Sofi
gmsofi@cukashmir.ac.in
-
W. M. Shah
wali@cukashmir.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.515Abstract
In this note we prove a result that highlights an interesting connection between the structure of the zeros of a polynomial \(p(z)\) and Sendov's conjecture.
Keywords
Mathematics Subject Classification:
B. D. Bojanov, Q. I. Rahman, and J. Szynal, “On a conjecture of Sendov about the critical points of a polynomial,” Math. Z., vol. 190, no. 2, pp. 281–285, 1985, doi: 10.1007/BF01160464.
I. Borcea, “On the Sendov conjecture for polynomials with at most six distinct roots,” J. Math. Anal. Appl., vol. 200, no. 1, pp. 182–206, 1996, doi: 10.1006/jmaa.1996.0198.
J. E. Brown and G. Xiang, “Proof of the Sendov conjecture for polynomials of degree at most eight,” J. Math. Anal. Appl., vol. 232, no. 2, pp. 272–292, 1999, doi: 10.1006/jmaa.1999.6267.
T. P. Chalebgwa, “Sendov’s conjecture: a note on a paper of Dégot,” Anal. Math., vol. 46, no. 3, pp. 447–463, 2020, doi: 10.1007/s10476-020-0050-x.
J. Dégot, “Sendov conjecture for high degree polynomials,” Proc. Amer. Math. Soc., vol. 142, no. 4, pp. 1337–1349, 2014, doi: 10.1090/S0002-9939-2014-11888-0.
W. K. Hayman, Research problems in function theory. The Athlone Press [University of London], London, 1967.
P. Kumar, “A remark on Sendov conjecture,” C. R. Acad. Bulgare Sci., vol. 71, no. 6, pp. 731–734, 2018.
M. J. Miller, “Maximal polynomials and the Ilieff-Sendov conjecture,” Trans. Amer. Math. Soc., vol. 321, no. 1, pp. 285–303, 1990, doi: 10.2307/2001603.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002, vol. 26.
Z. Rubinstein, “On a problem of Ilyeff,” Pacific J. Math., vol. 26, pp. 159–161, 1968.
G. Schmeisser, “Bemerkungen zu einer Vermutung von Ilieff.” Math Z., vol. 111, pp. 121–125, 1969, doi: 10.1007/BF01111192.
G. Schmeisser, “Zur Lage der kritischen Punkte eines Polynoms,” Rendiconti del Seminario Matematico della Università di Padova, vol. 46, pp. 405–415, 1971.
G. M. Sofi and W. M. Shah, “On Sendov’s conjecture,” Rend. Circ. Mat. Palermo (2), vol. 72, no. 1, pp. 493–497, 2023, doi: 10.1007/s12215-021-00690-y.
G. M. Sofi, S. A. Ahanger, and R. B. Gardner, “Some classes of polynomials satisfying Sendov’s conjecture,” Studia Sci. Math. Hungar., vol. 57, no. 4, pp. 436–443, 2020, doi: 10.1556/012.2020.57.4.1475.
T. Tao, “Sendov’s conjecture for sufficiently-high-degree polynomials,” Acta Math., vol. 229, no. 2, pp. 347–392, 2022.
Similar Articles
- Shuichi Otake, Tony Shaska, Some remarks on the non-real roots of polynomials , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Pedro Ferreira de Lima, Andr´e Toom, Dualities Useful in Bond Percolation , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- V´Ä±ctor Ayala, Marcos M. Diniz, Jos´e C.P. Lima, Jos´e M.M. Veloso, Ivan Tribuzy, Wave Front Sets Singularities of Homogeneous Sub-Riemannian Three Dimensional Manifolds , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Sushanta Kumar Mohanta, Common Fixed Point Results in C∗-Algebra Valued b-Metric Spaces Via Digraphs , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Ioannis Gasteratos, Spiridon Kuruklis, Thedore Kuruklis, A Trigonometrical Approach to Morley‘s Observation , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Tom M. Apostol, Lattice Points , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. M. Sofi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.