Families of skew linear harmonic Euler sums involving some parameters
-
Anthony Sofo
anthony.sofo@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.075Abstract
In this study we investigate a family of skew linear harmonic Euler sums involving some free parameters. Our analysis involves using the properties of the polylogarithm function, commonly referred to as the Bose-Einstein integral. A reciprocity property is utilized to highlight an explicit representation for a particular skew harmonic linear Euler sum. A number of examples are also given which highlight the theorems. This work generalizes some results in the published literature and introduces some new results.
Keywords
Mathematics Subject Classification:
H. Alzer and J. Choi, “Four parametric linear Euler sums,” J. Math. Anal. Appl., vol. 484, no. 1, 2020, Art. ID 123661, doi: 10.1016/j.jmaa.2019.123661.
D. Borwein, J. M. Borwein, and R. Girgensohn, “Explicit evaluation of Euler sums,” Proc. Edinburgh Math. Soc. (2), vol. 38, no. 2, pp. 277–294, 1995, doi: 10.1017/S0013091500019088.
J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, “Central binomial sums, multiple Clausen values, and zeta values,” Experiment. Math., vol. 10, no. 1, pp. 25–34, 2001, doi: 10.1080/10586458.2001.10504426.
W. Chu, “Infinite series on quadratic skew harmonic numbers,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 117, no. 2, 2023, Art. ID 75, doi: 10.1007/s13398-023- 01407-9.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
P. Flajolet and B. Salvy, “Euler sums and contour integral representations,” Experiment. Math., vol. 7, no. 1, pp. 15–35, 1998, doi: 10.1080/10586458.1998.10504356.
L. Lewin, Polylogarithms and associated functions. North-Holland Publishing Co., New York- Amsterdam, 1981.
L. A. Medina and V. H. Moll, “The integrals in Gradshteyn and Ryzhik part 27: More logarithmic examples,” Scientia, vol. 26, pp. 31–47, 2015.
N. Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten. Chelsea Publishing Co., New York, 1965.
A. S. Nimbran, P. Levrie, and A. Sofo, “Harmonic-binomial Euler-like sums via expansions of (arcsinx)p,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 116, no. 1, 2022, Art. ID 23, doi: 10.1007/s13398-021-01156-7.
A. Sofo, “General order Euler sums with multiple argument,” J. Number Theory, vol. 189, pp. 255–271, 2018, doi: 10.1016/j.jnt.2017.12.006.
A. Sofo, “General order Euler sums with rational argument,” Integral Transforms Spec. Funct., vol. 30, no. 12, pp. 978–991, 2019, doi: 10.1080/10652469.2019.1643851.
A. Sofo and J. Choi, “Extension of the four Euler sums being linear with parameters and series involving the zeta functions,” J. Math. Anal. Appl., vol. 515, no. 1, 2022, Art. ID 126370, doi: 10.1016/j.jmaa.2022.126370.
A. Sofo and A. S. Nimbran, “Euler-like sums via powers of log, arctan and arctanh functions,” Integral Transforms Spec. Funct., vol. 31, no. 12, pp. 966–981, 2020, doi: 10.1080/10652469.2020.1765775.
H. M. Srivastava, M. A. Chaudhry, A. Qadir, and A. Tassaddiq, “Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions,” Russ. J. Math. Phys., vol. 18, no. 1, pp. 107–121, 2011, doi: 10.1134/S1061920811010110.
H. M. Srivastava and J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001, doi: 10.1007/978-94-015-9672-5.
H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals. Elsevier, Inc., Amsterdam, 2012, doi: 10.1016/B978-0-12-385218-2.00001-3.
S. M. Stewart, “Explicit expressions for some linear Euler-type sums containing harmonic and skew-harmonic numbers,” J. Class. Anal., vol. 20, no. 2, pp. 79–101, 2022, doi: 10.7153/jca- 2022-20-07.
Similar Articles
- Ovidiu Furdui, Alina Sîntămărian, Cubic and quartic series with the tail of \(\ln 2\) , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Sepide Hajighasemi, Shirin Hejazian, Surjective maps preserving the reduced minimum modulus of products , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Branko Malešević, Dimitrije Jovanović, Frame’s Types of Inequalities and Stratification , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Sofo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.