On a class of evolution problems driven by maximal monotone operators with integral perturbation
-
Fatima Fennour
fennourfatima38@gmail.com
-
Soumia Saïdi
soumiasaidi44@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.123Abstract
The present paper is dedicated to the study of a first-order differential inclusion driven by time and state-dependent maximal monotone operators with integral perturbation, in the context of Hilbert spaces. Based on a fixed point method, we derive a new existence theorem for this class of differential inclusions. Then, we investigate an optimal control problem subject to such a class, by considering control maps acting in the state of the operators and the integral perturbation.
Keywords
Mathematics Subject Classification:
F. Amiour, M. Sene, and T. Haddad, “Existence results for state-dependent maximal monotone differential inclusions: fixed point approach,” Numer. Funct. Anal. Optim., vol. 43, no. 7, pp. 838–859, 2022, doi: 10.1080/01630563.2022.2059675.
D. Azzam-Laouir, W. Belhoula, C. Castaing, and M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications,” J. Fixed Point Theory Appl., vol. 21, no. 2, 2019, Art. ID. 40, doi: 10.1007/s11784-019-0666-2.
V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Lei- den, 1976, translated from the Romanian.
A. Bouabsa and S. Saïdi, “Coupled systems of subdifferential type with integral perturbation and fractional differential equations,” Advances in the Theory of Nonlinear Analysis and its Applications, vol. 7, no. 1, pp. 253–271, 2023, doi: 10.31197/atnaa.1149751.
A. Bouach, T. Haddad, and B. S. Mordukhovich, “Optimal control of nonconvex integro- differential sweeping processes,” J. Differential Equations, vol. 329, pp. 255–317, 2022, doi: 10.1016/j.jde.2022.05.004.
A. Bouach, T. Haddad, and L. Thibault, “Nonconvex integro-differential sweeping process with applications,” SIAM J. Control Optim., vol. 60, no. 5, pp. 2971–2995, 2022, doi: 10.1137/21M1397635.
A. Bouach, T. Haddad, and L. Thibault, “On the discretization of truncated integro-differential sweeping process and optimal control,” J. Optim. Theory Appl., vol. 193, no. 1-3, pp. 785–830, 2022, doi: 10.1007/s10957-021-01991-z.
Y. Brenier, W. Gangbo, G. Savaré, and M. Westdickenberg, “Sticky particle dynamics with interactions,” J. Math. Pures Appl., vol. 99, no. 5, pp. 577–617, 2013, doi: 10.1016/j.matpur.2012.09.013.
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, ser. North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973, vol. 5.
L. M. Briceño Arias, N. D. Hoang, and J. Peypouquet, “Existence, stability and optimality for optimal control problems governed by maximal monotone operators,” J. Differential Equations, vol. 260, no. 1, pp. 733–757, 2016, doi: 10.1016/j.jde.2015.09.006.
M. Brokate and P. Krejčí, “Optimal control of ODE systems involving a rate independent variational inequality,” Discrete Contin. Dyn. Syst. Ser. B, vol. 18, no. 2, pp. 331–348, 2013, doi: 10.3934/dcdsb.2013.18.331.
T. H. Cao and B. S. Mordukhovich, “Optimal control of a nonconvex perturbed sweeping process,” J. Differential Equations, vol. 266, no. 2-3, pp. 1003–1050, 2019, doi: 10.1016/j.jde.2018.07.066.
C. Castaing, C. Godet-Thobie, M. D. P. Monteiro Marques, and A. Salvadori, “Evolution problems with m-accretive operators and perturbations,” Mathematics, vol. 10, no. 3, 2022, Art. ID 317, doi: 10.3390/math10030317.
C. Castaing, C. Godet-Thobie, S. Saïdi, and M. D. P. Monteiro Marques, “Various perturbations of time dependent maximal monotone/accretive operators in evolution inclusions with applications,” Appl. Math. Optim., vol. 87, no. 2, 2023, Art. ID 24, doi: 10.1007/s00245-022- 09898-5.
C. Castaing, C. Godet-Thobie, and L. X. Truong, “Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator,” Mathematics, vol. 8, no. 9, 2020, Art. ID 1395, doi: 10.3390/math8091395.
C. Castaing, P. Raynaud de Fitte, and M. Valadier, Young measures on topological spaces, ser. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2004, vol. 571, doi: 10.1007/1-4020-1964-5.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Optimal control of the sweeping process,” Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, vol. 19, no. 1-2, pp. 117–159, 2012.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Discrete approximations of a controlled sweeping process,” Set-Valued Var. Anal., vol. 23, no. 1, pp. 69–86, 2015, doi: 10.1007/s11228-014-0299-y.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Optimal control of the sweeping process over polyhedral controlled sets,” J. Differential Equations, vol. 260, no. 4, pp. 3397–3447, 2016, doi: 10.1016/j.jde.2015.10.039.
G. Colombo and C. Kozaily, “Existence and uniqueness of solutions for an integral perturbation of Moreau’s sweeping process,” J. Convex Anal., vol. 27, no. 1, pp. 229–238, 2020.
M. d. R. de Pinho, M. M. A. Ferreira, and G. V. Smirnov, “Optimal control involving sweeping processes,” Set-Valued Var. Anal., vol. 27, no. 2, pp. 523–548, 2019, doi: 10.1007/s11228-018- 0501-8.
M. d. R. de Pinho, M. M. A. Ferreira, and G. Smirnov, “Necessary conditions for optimal control problems with sweeping systems and end point constraints,” Optimization, vol. 71, no. 11, pp. 3363–3381, 2022, doi: 10.1080/02331934.2022.2101111.
M. de Pinho, M. M. A. Ferreira, and G. Smirnov, “Optimal control with sweeping processes: numerical method,” J. Optim. Theory Appl., vol. 185, no. 3, pp. 845–858, 2020, doi: 10.1007/s10957-020-01670-5.
K. Deimling, Non Linear Functional Analysis. Springer-Verlag, Berlin, 1985, doi: 10.1007/978-3-662-00547-7.
M. Guessous, “An elementary proof of Komlós-Révész theorem in Hilbert spaces,” J. Convex Anal., vol. 4, no. 2, pp. 321–332, 1997.
E. Klein and A. C. Thompson, Theory of correspondences, ser. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1984.
M. Kunze and M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains,” Set-Valued Anal., vol. 5, no. 1, pp. 57–72, 1997, doi: 10.1023/A:1008621327851.
B. K. Le, “Well-posedness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions,” Optimization, vol. 69, no. 6, pp. 1187–1217, 2020, doi: 10.1080/02331934.2019.1686504.
C. Nour and V. Zeidan, “Numerical solution for a controlled nonconvex sweeping process,” IEEE Control Syst. Lett., vol. 6, pp. 1190–1195, 2022, doi: 10.1109/lcsys.2021.3089977.
C. Nour and V. Zeidan, “Optimal control of nonconvex sweeping processes with separable endpoints: nonsmooth maximum principle for local minimizers,” J. Differential Equations, vol. 318, pp. 113–168, 2022, doi: 10.1016/j.jde.2022.02.021.
C. Nour and V. Zeidan, “A control space ensuring the strong convergence of continuous approximation for a controlled sweeping process,” Set-Valued Var. Anal., vol. 31, no. 3, 2023, Art. ID 23, doi: 10.1007/s11228-023-00686-z.
C. Nour and V. Zeidan, “Nonsmooth optimality criterion for a W1,2-controlled sweeping process: Nonautonomous perturbation,” Appl. Set-Valued Anal. Optim., vol. 5, no. 2, pp. 193–212, 2023, doi: 10.23952/asvao.5.2023.2.06.
S. Saïdi, “A perturbed second-order problem with time and state-dependent maximal mono- tone operators,” Discuss. Math. Differ. Incl. Control Optim., vol. 41, no. 1, pp. 61–86, 2021, doi: 10.7151/dmdico.
F. Selamnia, D. Azzam-Laouir, and M. D. P. Monteiro Marques, “Evolution problems involving state-dependent maximal monotone operators,” Appl. Anal., vol. 101, no. 1, pp. 297–313, 2022, doi: 10.1080/00036811.2020.1738401.
A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space,” Nonlinear Anal., vol. 17, no. 6, pp. 499–518, 1991, doi: 10.1016/0362-546X(91)90061-5.
I. I. Vrabie, Compactness methods for nonlinear evolutions, ser. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987, vol. 32.
V. Zeidan, C. Nour, and H. Saoud, “A nonsmooth maximum principle for a controlled non-convex sweeping process,” J. Differential Equations, vol. 269, no. 11, pp. 9531–9582, 2020, doi: 10.1016/j.jde.2020.06.053.
Similar Articles
- Paolo Piccione, Daniel V. Tausk, Topological Methods for ODE's: Symplectic Differential Systems , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- J. Blot, D. Pennequin, Gaston M. N‘Gu´er´ekata, Existence and Uniqueness of Pseudo Almost Automorphic Solutions to Some Classes of Partial Evolution Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Khalil Ezzinbi, Valerie Nelson, Gaston N‘Gu´er´ekata, ð¶â½â¿â¾-Almost Automorphic Solutions of Some Nonautonomous Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 F. Fennour et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.