On a class of evolution problems driven by maximal monotone operators with integral perturbation
-
Fatima Fennour
fennourfatima38@gmail.com
-
Soumia Saïdi
soumiasaidi44@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.123Abstract
The present paper is dedicated to the study of a first-order differential inclusion driven by time and state-dependent maximal monotone operators with integral perturbation, in the context of Hilbert spaces. Based on a fixed point method, we derive a new existence theorem for this class of differential inclusions. Then, we investigate an optimal control problem subject to such a class, by considering control maps acting in the state of the operators and the integral perturbation.
Keywords
Mathematics Subject Classification:
F. Amiour, M. Sene, and T. Haddad, “Existence results for state-dependent maximal monotone differential inclusions: fixed point approach,” Numer. Funct. Anal. Optim., vol. 43, no. 7, pp. 838–859, 2022, doi: 10.1080/01630563.2022.2059675.
D. Azzam-Laouir, W. Belhoula, C. Castaing, and M. D. P. Monteiro Marques, “Perturbed evolution problems with absolutely continuous variation in time and applications,” J. Fixed Point Theory Appl., vol. 21, no. 2, 2019, Art. ID. 40, doi: 10.1007/s11784-019-0666-2.
V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Lei- den, 1976, translated from the Romanian.
A. Bouabsa and S. Saïdi, “Coupled systems of subdifferential type with integral perturbation and fractional differential equations,” Advances in the Theory of Nonlinear Analysis and its Applications, vol. 7, no. 1, pp. 253–271, 2023, doi: 10.31197/atnaa.1149751.
A. Bouach, T. Haddad, and B. S. Mordukhovich, “Optimal control of nonconvex integro- differential sweeping processes,” J. Differential Equations, vol. 329, pp. 255–317, 2022, doi: 10.1016/j.jde.2022.05.004.
A. Bouach, T. Haddad, and L. Thibault, “Nonconvex integro-differential sweeping process with applications,” SIAM J. Control Optim., vol. 60, no. 5, pp. 2971–2995, 2022, doi: 10.1137/21M1397635.
A. Bouach, T. Haddad, and L. Thibault, “On the discretization of truncated integro-differential sweeping process and optimal control,” J. Optim. Theory Appl., vol. 193, no. 1-3, pp. 785–830, 2022, doi: 10.1007/s10957-021-01991-z.
Y. Brenier, W. Gangbo, G. Savaré, and M. Westdickenberg, “Sticky particle dynamics with interactions,” J. Math. Pures Appl., vol. 99, no. 5, pp. 577–617, 2013, doi: 10.1016/j.matpur.2012.09.013.
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, ser. North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973, vol. 5.
L. M. Briceño Arias, N. D. Hoang, and J. Peypouquet, “Existence, stability and optimality for optimal control problems governed by maximal monotone operators,” J. Differential Equations, vol. 260, no. 1, pp. 733–757, 2016, doi: 10.1016/j.jde.2015.09.006.
M. Brokate and P. Krejčí, “Optimal control of ODE systems involving a rate independent variational inequality,” Discrete Contin. Dyn. Syst. Ser. B, vol. 18, no. 2, pp. 331–348, 2013, doi: 10.3934/dcdsb.2013.18.331.
T. H. Cao and B. S. Mordukhovich, “Optimal control of a nonconvex perturbed sweeping process,” J. Differential Equations, vol. 266, no. 2-3, pp. 1003–1050, 2019, doi: 10.1016/j.jde.2018.07.066.
C. Castaing, C. Godet-Thobie, M. D. P. Monteiro Marques, and A. Salvadori, “Evolution problems with m-accretive operators and perturbations,” Mathematics, vol. 10, no. 3, 2022, Art. ID 317, doi: 10.3390/math10030317.
C. Castaing, C. Godet-Thobie, S. Saïdi, and M. D. P. Monteiro Marques, “Various perturbations of time dependent maximal monotone/accretive operators in evolution inclusions with applications,” Appl. Math. Optim., vol. 87, no. 2, 2023, Art. ID 24, doi: 10.1007/s00245-022- 09898-5.
C. Castaing, C. Godet-Thobie, and L. X. Truong, “Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator,” Mathematics, vol. 8, no. 9, 2020, Art. ID 1395, doi: 10.3390/math8091395.
C. Castaing, P. Raynaud de Fitte, and M. Valadier, Young measures on topological spaces, ser. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2004, vol. 571, doi: 10.1007/1-4020-1964-5.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Optimal control of the sweeping process,” Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, vol. 19, no. 1-2, pp. 117–159, 2012.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Discrete approximations of a controlled sweeping process,” Set-Valued Var. Anal., vol. 23, no. 1, pp. 69–86, 2015, doi: 10.1007/s11228-014-0299-y.
G. Colombo, R. Henrion, N. D. Hoang, and B. S. Mordukhovich, “Optimal control of the sweeping process over polyhedral controlled sets,” J. Differential Equations, vol. 260, no. 4, pp. 3397–3447, 2016, doi: 10.1016/j.jde.2015.10.039.
G. Colombo and C. Kozaily, “Existence and uniqueness of solutions for an integral perturbation of Moreau’s sweeping process,” J. Convex Anal., vol. 27, no. 1, pp. 229–238, 2020.
M. d. R. de Pinho, M. M. A. Ferreira, and G. V. Smirnov, “Optimal control involving sweeping processes,” Set-Valued Var. Anal., vol. 27, no. 2, pp. 523–548, 2019, doi: 10.1007/s11228-018- 0501-8.
M. d. R. de Pinho, M. M. A. Ferreira, and G. Smirnov, “Necessary conditions for optimal control problems with sweeping systems and end point constraints,” Optimization, vol. 71, no. 11, pp. 3363–3381, 2022, doi: 10.1080/02331934.2022.2101111.
M. de Pinho, M. M. A. Ferreira, and G. Smirnov, “Optimal control with sweeping processes: numerical method,” J. Optim. Theory Appl., vol. 185, no. 3, pp. 845–858, 2020, doi: 10.1007/s10957-020-01670-5.
K. Deimling, Non Linear Functional Analysis. Springer-Verlag, Berlin, 1985, doi: 10.1007/978-3-662-00547-7.
M. Guessous, “An elementary proof of Komlós-Révész theorem in Hilbert spaces,” J. Convex Anal., vol. 4, no. 2, pp. 321–332, 1997.
E. Klein and A. C. Thompson, Theory of correspondences, ser. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1984.
M. Kunze and M. D. P. Monteiro Marques, “BV solutions to evolution problems with time-dependent domains,” Set-Valued Anal., vol. 5, no. 1, pp. 57–72, 1997, doi: 10.1023/A:1008621327851.
B. K. Le, “Well-posedness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions,” Optimization, vol. 69, no. 6, pp. 1187–1217, 2020, doi: 10.1080/02331934.2019.1686504.
C. Nour and V. Zeidan, “Numerical solution for a controlled nonconvex sweeping process,” IEEE Control Syst. Lett., vol. 6, pp. 1190–1195, 2022, doi: 10.1109/lcsys.2021.3089977.
C. Nour and V. Zeidan, “Optimal control of nonconvex sweeping processes with separable endpoints: nonsmooth maximum principle for local minimizers,” J. Differential Equations, vol. 318, pp. 113–168, 2022, doi: 10.1016/j.jde.2022.02.021.
C. Nour and V. Zeidan, “A control space ensuring the strong convergence of continuous approximation for a controlled sweeping process,” Set-Valued Var. Anal., vol. 31, no. 3, 2023, Art. ID 23, doi: 10.1007/s11228-023-00686-z.
C. Nour and V. Zeidan, “Nonsmooth optimality criterion for a W1,2-controlled sweeping process: Nonautonomous perturbation,” Appl. Set-Valued Anal. Optim., vol. 5, no. 2, pp. 193–212, 2023, doi: 10.23952/asvao.5.2023.2.06.
S. Saïdi, “A perturbed second-order problem with time and state-dependent maximal mono- tone operators,” Discuss. Math. Differ. Incl. Control Optim., vol. 41, no. 1, pp. 61–86, 2021, doi: 10.7151/dmdico.
F. Selamnia, D. Azzam-Laouir, and M. D. P. Monteiro Marques, “Evolution problems involving state-dependent maximal monotone operators,” Appl. Anal., vol. 101, no. 1, pp. 297–313, 2022, doi: 10.1080/00036811.2020.1738401.
A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space,” Nonlinear Anal., vol. 17, no. 6, pp. 499–518, 1991, doi: 10.1016/0362-546X(91)90061-5.
I. I. Vrabie, Compactness methods for nonlinear evolutions, ser. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987, vol. 32.
V. Zeidan, C. Nour, and H. Saoud, “A nonsmooth maximum principle for a controlled non-convex sweeping process,” J. Differential Equations, vol. 269, no. 11, pp. 9531–9582, 2020, doi: 10.1016/j.jde.2020.06.053.
Similar Articles
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- E. A. Grove, E. Lapierre, W. Tikjha, On the global behavior of ð‘¥áµ¤â‚Šâ‚ = |ð‘¥áµ¤|− ð‘¦áµ¤ − 1 and ð‘¦áµ¤â‚Šâ‚ = ð‘¥áµ¤ +|ð‘¦áµ¤| , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 F. Fennour et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











