Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2602.191

Abstract

The article explores a linear set-valued differential equation featuring both conformable fractional and generalized conformable fractional derivatives. It presents conditions for the existence of solutions and provides analytical expressions for the shape of solution sections at different time points. Model examples are employed to illustrate the results.

Keywords

Conformable fractional derivative , set-valued differential equation , Hukuhara derivative , generalized derivative

Mathematics Subject Classification:

26A33 , 34K37 , 26E25 , 34A08 , 34A30
  • Pages: 191–215
  • Date Published: 2024-06-26
  • Vol. 26 No. 2 (2024)

A. Akkurt, M. E. Yıldırım, and H. Yıldırım, “A new generalized fractional derivative and integral,” Konuralp J. Math., vol. 5, no. 2, pp. 248–259, 2017.

R. Almeida, M. Guzowska, and T. Odzijewicz, “A remark on local fractional calculus and ordinary derivatives,” Open Math., vol. 14, no. 1, pp. 1122–1124, 2016, doi: 10.1515/math- 2016-0104.

Ş. E. Amrahov, A. Khastan, N. Gasilov, and A. G. Fatullayev, “Relationship between Bede-Gal differentiable set-valued functions and their associated support functions,” Fuzzy Sets and Systems, vol. 295, pp. 57–71, 2016, doi: 10.1016/j.fss.2015.12.002.

A. Atangana and E. F. Doungmo Goufo, “Extension of matched asymptotic method to fractional boundary layers problems,” Math. Probl. Eng., 2014, Art. ID 107535, doi: 10.1155/2014/107535.

H. T. Banks and M. Q. Jacobs, “A differential calculus for multifunctions,” J. Math. Anal. Appl., vol. 29, pp. 246–272, 1970, doi: 10.1016/0022-247X(70)90078-8.

T. F. Bridgland, Jr., “Trajectory integrals of set valued functions,” Pacific J. Math., vol. 33, pp. 43–68, 1970.

S. Chakraverty, S. Tapaswini, and D. Behera, Fuzzy differential equations and applications for engineers and scientists. CRC Press, Boca Raton, FL, 2017.

Y. Chalco-Cano, H. Román-Flores, and M. D. Jiménez-Gamero, “Generalized derivative and π-derivative for set-valued functions,” Inform. Sci., vol. 181, no. 11, pp. 2177–2188, 2011, doi: 10.1016/j.ins.2011.01.023.

W. Chen, “Time–space fabric underlying anomalous diffusion,” Chaos, Solitons & Fractals, vol. 28, no. 4, pp. 923–929, 2006, doi: 10.1016/j.chaos.2005.08.199.

W. Chen, H. Sun, X. Zhang, and D. Korošak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Comput. Math. Appl., vol. 59, no. 5, pp. 1754–1758, 2010, doi: 10.1016/j.camwa.2009.08.020.

F. S. de Blasi, V. Lakshmikantham, and T. G. Bhaskar, “An existence theorem for set differential inclusions in a semilinear metric space,” Control Cybernet., vol. 36, no. 3, pp. 571–582, 2007.

F. De Blasi and F. Iervolino, “Equazioni differenziali con soluzioni a valore compatto convesso,” Boll. Unione Mat. Ital, vol. 2, no. 4-5, pp. 491–501, 1969.

E. C. de Oliveira and J. A. Tenreiro Machado, “A review of definitions for fractional derivatives and integral,” Math. Probl. Eng., 2014, Art. ID 238459, doi: 10.1155/2014/238459.

G. E. Forsythe and C. B. Moler, Computer solution of linear algebraic systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.

P. M. Guzmán, G. Langton, L. M. Lugo Motta Bittencurt, J. Medina, and J. E. Nápoles Valdes, “A new definition of a fractional derivative of local type,” J. Math. Anal., vol. 9, no. 2, pp. 88–98, 2018.

R. A. Horn and C. R. Johnson, Matrix analysis, 2nd ed. Cambridge University Press, Cambridge, 2013.

M. Hukuhara, “Conformable fractional derivatives and it is applications for solving fractional differential equations,” IOSR Journal of Mathematics, vol. 13, no. 2, pp. 81–87, 2017, doi: 10.9790/5728-1302028187.

A. Kajouni, A. Chafiki, K. Hilal, and M. Oukessou, “A new conformable fractional derivative and applications,” Int. J. Differ. Equ., 2021, Art. ID 6245435, doi: 10.1155/2021/6245435.

R. M. Kamble and S. S. Zampalwad, “New generalized definition of conformable fractional derivative,” International Journal of Modern Developments in Engineering and Science, vol. 1, no. 2, pp. 1–5, 2022.

A. M. Kareem, “Intégration des applications mesurables dont la valeur est un compact convexe,” Funkcial. Ekvac., vol. 10, pp. 205–223, 1967.

U. N. Katugampola, “A new fractional derivative with classical properties,” 2014, arXiv:1410.6535.

R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” J. Comput. Appl. Math., vol. 264, pp. 65–70, 2014, doi: 10.1016/j.cam.2014.01.002.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, ser. North-Holland Mathematics Studies. Elsevier Science B. V., Amsterdam, 2006, vol. 204.

T. A. Komleva and A. V. Plotnikov, “Differential inclusions with the Hukuhara derivative,” Nel ̄ın ̄ı ̆ın ̄ı Koliv., vol. 10, no. 2, pp. 229–246, 2007, doi: 10.1007/s11072-007-0017-x.

T. A. Komleva, A. V. Plotnikov, L. I. Plotnikova, and N. V. Skripnik, “Conditions for the existence of basic solutions of linear multivalued differential equations,” Ukrainian Math. J., vol. 73, no. 5, pp. 758–783, 2021.

T. A. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Differential equations with multivalued solutions,” Ukraïn. Mat. Zh., vol. 60, no. 10, pp. 1326–1337, 2008, doi: 10.1007/s11253-009- 0150-z.

T. O. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Existence of solutions of linear set-valued integral equations and their properties,” J. Math. Sci. (N.Y.), vol. 277, no. 2, pp. 268–280, 2023, doi: 10.1007/s10958-023-06831-1.

T. A. Komleva, L. I. Plotnikova, N. V. Skripnik, and A. V. Plotnikov, “Some remarks on linear set-valued differential equations,” Stud. Univ. Babeş-Bolyai Math., vol. 65, no. 3, pp. 411–427, 2020, doi: 10.24193/subbmath.2020.3.09.

V. Lakshmikantham, T. G. Bhaskar, and J. Vasundhara Devi, Theory of set differential equations in metric spaces. Cambridge Scientific Publishers, Cambridge, 2006.

V. Lakshmikantham and R. N. Mohapatra, Theory of fuzzy differential equations and inclusions, ser. Series in Mathematical Analysis and Applications. Taylor & Francis Group, London, 2003, vol. 6, doi: 10.1201/9780203011386.

V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of fractional dynamic systems. Cambridge Scientific Publ., 2009.

A. Lasota and A. Strauss, “Asymptotic behavior for differential equations which cannot be locally linearized,” J. Differential Equations, vol. 10, pp. 152–172, 1971, doi: 10.1016/0022- 0396(71)90103-3.

M. Martelli and A. Vignoli, “On differentiabiliy of multi-valued maps,” Boll. Un. Mat. Ital. (4), vol. 10, pp. 701–712, 1974.

A. A. Martynyuk, “A fractional-like Hukuhara derivative and its properties,” Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, no. 4, pp. 10–16, 2019, doi: 10.15407/dopo- vidi2019.04.010.

A. A. Martynyuk, G. T. Stamov, and I. M. Stamova, “Fractional-like Hukuhara derivatives in the theory of set-valued differential equations,” Chaos, Solitons & Fractals, vol. 131, 2020, Art. ID 109487, doi: 10.1016/j.chaos.2019.109487.

A. A. Martynyuk, Qualitative analysis of set-valued differential equations. Birkhäuser/Springer, Cham, 2019, doi: 10.1007/978-3-030-07644-3.

N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential equations with impulse effects, ser. De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2011, vol. 40, multivalued right-hand sides with discontinuities.

M. Piszczek, “On a multivalued second order differential problem with Hukuhara derivative,” Opuscula Math., vol. 28, no. 2, pp. 151–161, 2008.

A. V. Plotnikov, “Differentiation of multivalued mappings. The T-derivative,” Ukraïn. Mat. Zh., vol. 52, no. 8, pp. 1119–1126, 2000, doi: 10.1023/A:1010361206391.

A. V. Plotnikov and N. V. Skripnik, “Conditions for the existence of local solutions of set-valued differential equations with generalized derivative,” Ukrainian Math. J., vol. 65, no. 10, pp. 1498–1513, 2014, doi: 10.1007/s11253-014-0875-1.

A. V. Plotnikov and A. V. Tumbrukaki, “Integrodifferential equations with multivalued solutions,” Ukraïn. Mat. Zh., vol. 52, no. 3, pp. 359–367, 2000, doi: 10.1007/BF02513136.

A. V. Plotnikov, T. A. Komleva, and I. V. Molchanyuk, “Existence and uniqueness theorem for set-valued Volterra-Hammerstein integral equations,” Asian-Eur. J. Math., vol. 11, no. 3, 2018, Art. ID 1850036, doi: 10.1142/S1793557118500365.

A. V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “Averaging of a system of set-valued differential equations with the hukuhara derivative,” Journal of Uncertain Systems, vol. 13, no. 1, pp. 3–13, 2019.

A. V. Plotnikov and N. Skripnik, “An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations,” Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., vol. 20, no. 4, pp. 433–445, 2013.

A. V. Plotnikov and N. V. Skripnik, “Set-valued differential equations with generalized deriva- tive,” J. Adv. Res. Pure Math., vol. 3, no. 1, pp. 144–160, 2011, doi: 10.5373/jarpm.475.062210.

A. Plotnikov and N. Skripnik, Differential equations with clear and fuzzy multivalued right- hand sides. Asymptotics Methods. AstroPrint, Odessa, 2009.

A. Plotnikov and N. Skripnik, “Existence and uniqueness theorems for generalized set differential equations,” Int. J. Control Sc. Eng, vol. 2, no. 1, pp. 1–6, 2012.

V. Plotnikov, A. Plotnikov, and A. Vityuk, Differential equations with a multivalued right-hand side: Asymptotic methods. Odessa: AstroPrint, 1999.

N. V. Plotnikova, “Systems of linear differential equations withpi-derivative and linear differential inclusions,” Sbornik: Mathematics, vol. 196, no. 11, pp. 1677–1691, 2005, doi: 10.1070/SM2005v196n11ABEH003726.

I. Podlubny, Fractional differential equations, ser. Mathematics in Science and Engineering. Academic Press, Inc., San Diego, CA, 1999, vol. 198.

E. S. Polovinkin, Set-valued analysis and differential inclusions. Moscow: Fizmatlit, 2014, vol. 524.

H. Rådström, “An embedding theorem for spaces of convex sets,” Proc. Amer. Math. Soc., vol. 3, pp. 165–169, 1952, doi: 10.2307/2032477.

A. Tolstonogov, Differential inclusions in a Banach space, ser. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2000, vol. 524, doi: 10.1007/978-94-015- 9490-5.

Y. N. Tyurin, “Mathematical formulation of a simplified production planning model,” Economy and mat. methods, no. 3, pp. 391–409, 1965.

A. N. Vityuk, “Fractional differentiation of multivalued mappings,” Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, no. 10, pp. 75–79, 2003.

A. Vityuk, “Differential equations of fractional order with set-valued solutions,” Visn. Odes. Derzh. Univ., Ser. Fiz.-Mat. Nauky, vol. 8, no. 2, pp. 108–112, 2003.

P. Wang and J. Bi, “The stability of set-valued differential equations with different initial time in the sense of fractional-like Hukuhara derivatives,” Fractal and Fractional, vol. 7, no. 1, p. 20, 2022, doi: 10.3390/fractalfract7010020.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-06-26

How to Cite

[1]
T. A. Komleva, A. V. Plotnikov, and N. V. Skripnik, “Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative”, CUBO, vol. 26, no. 2, pp. 191–215, Jun. 2024.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.