Minimum-sized generating sets of the direct powers of free distributive lattices
Dedicated to the memory of George F. McNulty
-
Gábor Czédli
czedli@math.u-szeged.hu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.217Abstract
For a finite lattice \(L\), let Gm(\(L\)) denote the least \(n\) such that \(L\) can be generated by \(n\) elements. For integers \(r>2\) and \(k>1\), denote by FD\((r)^k\) the \(k\)-th direct power of the free distributive lattice FD(\(r\)) on \(r\) generators. We determine Gm(FD\((r)^k\)) for many pairs \((r,k)\) either exactly or with good accuracy by giving a lower estimate that becomes an upper estimate if we increase it by 1. For example, for \((r,k)=(5,25\,000)\) and \((r,k)=(20,\ 1.489\cdot 10^{1789})\), Gm(FD\((r)^k\)) is \(22\) and \(6\,000\), respectively. To reach our goal, we give estimates for the maximum number of pairwise unrelated copies of some specific posets (called full segment posets) in the subset lattice of an \(n\)-element set. In addition to analogous earlier results in lattice theory, a connection with cryptology is also mentioned among the motivations.
Keywords
Mathematics Subject Classification:
D. Ahmed and G. Czédli, “(1 + 1 + 2)-generated lattices of quasiorders,” Acta Sci. Math. (Szeged), vol. 87, no. 3-4, pp. 415–427, 2021, doi: 10.14232/actasm-021-303-1.
I. Chajda and G. Czédli, “How to generate the involution lattice of quasiorders?” Studia Sci. Math. Hungar., vol. 32, no. 3-4, pp. 415–427, 1996.
G. Czédli, “Generating boolean lattices by few elements and exchanging session keys,” 2023, arXiv:2303.10790.
G. Czédli, “Sperner theorems for unrelated copies of some partially ordered sets in a powerset lattice and minimum generating sets of powers of distributive lattices,” 2023, arXiv:2308.15625.
G. Czédli, “Four-generated direct powers of partition lattices and authentication,” Publ. Math. Debrecen, vol. 99, no. 3-4, pp. 447–472, 2021, doi: 10.5486/pmd.2021.9024.
G. Czédli, “Generating some large filters of quasiorder lattices,” Acta Sci. Math. (Szeged), 2024, doi: 10.1007/s44146-024-00139-5.
G. Czédli and L. Oluoch, “Four-element generating sets of partition lattices and their direct products,” Acta Sci. Math. (Szeged), vol. 86, no. 3-4, pp. 405–448, 2020, doi: 10.14232/actasm-020-126-7.
A. P. Dove and J. R. Griggs, “Packing posets in the Boolean lattice,” Order, vol. 32, no. 3, pp. 429–438, 2015, doi: 10.1007/s11083-014-9343-7.
I. M. Gel’fand and V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,” in Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), ser. Colloq. Math. Soc. János Bolyai. North- Holland, Amsterdam-London, 1972, vol. 5, pp. 163–237.
G. Grätzer, Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel, 2011, doi: 10.1007/978-3-0348-0018-1.
J. R. Griggs, J. Stahl, and W. T. Trotter, Jr., “A Sperner theorem on unrelated chains of subsets,” J. Combin. Theory Ser. A, vol. 36, no. 1, pp. 124–127, 1984, doi: 10.1016/0097- 3165(84)90085-2.
G. O. H. Katona and D. T. Nagy, “Incomparable copies of a poset in the Boolean lattice,” Order, vol. 32, no. 3, pp. 419–427, 2015, doi: 10.1007/s11083-014-9342-8.
J. Kulin, “Quasiorder lattices are five-generated,” Discuss. Math. Gen. Algebra Appl., vol. 36, no. 1, pp. 59–70, 2016, doi: 10.7151/dmgaa.1248.
D. Lubell, “A short proof of Sperner’s lemma,” J. Combinatorial Theory, vol. 1, p. 299, 1966.
N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences,” https://oeis.org/, accessed: 2024-06-07.
E. Sperner, “Ein Satz über Untermengen einer endlichen Menge,” Math. Z., vol. 27, no. 1, pp. 544–548, 1928, doi: 10.1007/BF01171114.
H. Strietz, “Über Erzeugendenmengen endlicher Partitionverbände,” Studia Sci. Math. Hun- garica, vol. 12, pp. 1–17, 1977.
G. Takách, “Three-generated quasiorder lattices,” Discuss. Math. Algebra Stochastic Methods, vol. 16, no. 1, pp. 81–98, 1996.
L. Zádori, “Generation of finite partition lattices,” in Lectures in universal algebra (Szeged, 1983), ser. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 1986, vol. 43, pp. 573–586.
L. Zádori, “Subspace lattices of finite vector spaces are 5-generated,” Acta Sci. Math. (Szeged), vol. 74, no. 3-4, pp. 493–499, 2008.
Similar Articles
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Hendrik Van Maldeghem, Magali Victoor, On Severi varieties as intersections of a minimum number of quadrics , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- C. Carpintero, E. Rosas, N. Rajesh, S. Saranyasri, On upper and lower ω-irresolute multifunctions , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 G. Czédli

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.