The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries
-
Dmitri V. Alekseevsky
dalekseevsky@iitp.ru
-
Masoud Ganji
mganjia2@une.edu.au
-
Gerd Schmalz
a-schmalz@une.edu.au
-
Andrea Spiro
andrea.spiro@unicam.it
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.239Abstract
We explicitly derive the Christoffel symbols in terms of adapted frame fields for the Levi-Civita connection of a Lorentzian \(n\)-manifold \((M, g)\), equipped with a prescribed optical geometry of Kähler-Sasaki type. The formulas found in this paper have several important applications, such as determining the geometric invariants of Lorentzian manifolds with prescribed optical geometries or solving curvature constraints.
Keywords
Mathematics Subject Classification:
D. V. Alekseevsky, M. Ganji, and G. Schmalz, “CR-geometry and shearfree Lorentzian geometry,” in Geometric complex analysis, ser. Springer Proc. Math. Stat. Springer, Singapore, 2018, vol. 246, pp. 11–22.
D. V. Alekseevsky, M. Ganji, G. Schmalz, and A. Spiro, “Lorentzian manifolds with shearfree congruences and Kähler-Sasaki geometry,” Differential Geom. Appl., vol. 75, 2021, Art. ID 101724, doi: 10.1016/j.difgeo.2021.101724.
A. M. Awad and A. Chamblin, “A bestiary of higher-dimensional Taub-NUT-AdS space-times,” Classical Quantum Gravity, vol. 19, no. 8, pp. 2051–2061, 2002, doi: 10.1088/0264- 9381/19/8/301.
A. L. Besse, Einstein manifolds, ser. Classics in Mathematics. Springer-Verlag, Berlin, 2008, reprint of the 1987 edition.
A. Fino, T. Leistner, and A. Taghavi-Chabert, “Optical geometries,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2023, doi: 10.2422/2036-2145.202010_050. Accepted for publication.
M. Ganji, C. Giannotti, A. Spiro, and G. Schmalz, “Einstein manifolds with optical geometries of Kerr type,” 2024, arXiv:2405.14760.
C. D. Hill, J. Lewandowski, and P. Nurowski, “Einstein’s equations and the embedding of 3-dimensional CR manifolds,” Indiana Univ. Math. J., vol. 57, no. 7, pp. 3131–3176, 2008, doi: 10.1512/iumj.2008.57.3473.
L. P. Hughston and L. J. Mason, “A generalised Kerr-Robinson theorem,” Classical Quantum Gravity, vol. 5, no. 2, pp. 275–285, 1988.
R. P. Kerr, “Scalar invariants and groups of motions in a four-dimensional Einstein space,” J. Math. Mech., vol. 12, pp. 33–54, 1963.
R. P. Kerr, “Scalar invariants and groups of motions in a Vn with positive definite metric tensor,” Tensor (N.S.), vol. 12, pp. 74–83, 1962.
B. Kruglikov and E. Schneider, “Differential invariants of Kundt spacetimes,” Classical Quantum Gravity, vol. 38, no. 19, 2021, Art. ID 195017, doi: 10.1088/1361-6382/abff9c.
F. Podestà and A. Spiro, “Introduzione ai gruppi di trasformazione,” 1996, preprint Series of the Department V. Volterra of the University of Ancona.
I. Robinson, “Null electromagnetic fields,” J. Mathematical Phys., vol. 2, pp. 290–291, 1961, doi: 10.1063/1.1703712.
I. Robinson and A. Trautman, “Conformal geometry of flows in n dimensions,” J. Math. Phys., vol. 24, no. 6, pp. 1425–1429, 1983, doi: 10.1063/1.525878.
I. Robinson and A. Trautman, “Optical geometry,” in New Theories in Physics: Proceedings of the XI Warsaw Symposium on Elementary Particle Physics. Teaneck, NJ, USA: World Scientific Publishing Co., 1989, pp. 454–497.
S. Sternberg, Lectures on differential geometry, 2nd ed. Chelsea Publishing Co., New York, 1983.
- Grant “Basis-foundation” 22-7-1-34-1
Similar Articles
- Len Berggren, The Transmission of Greek Geometry to Medieval Islam , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- E. Ballico, Algebraic curves, differential geometry in positive characteristic and error-correcting codes , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Georgi Vodev, Semi-Classical Propagation of Singularities on Riemannian Manifolds without Boundary and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Joseph E. Bonin, A Brief Introduction to Matroid Theory Through Geometry , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Augustin Banyaga, Symplectic geometry and related structures , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 D. V. Alekseevsky et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.