\(L_p\)-boundedness of the Laplace transform
-
René Erlín Castillo
recastillo@unal.edu.co
-
Héctor Camilo Chaparro
hchaparrog@unicartagena.edu.co
-
Julio César Ramos-Fernández
jcramosf@udistrital.edu.co
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.359Abstract
In this paper, we discuss about the boundedness of the Laplace transform \(\mathcal{L}: L_p([0,\infty))\rightarrow L_p(A)\) (\(p\geq1\)) for the cases \(A=[0, \infty)\), \(A=[1, \infty)\) and \(A=[0, 1]\). We also provide examples for the cases where \(\mathcal{L}\) is unbounded.
Keywords
Mathematics Subject Classification:
J. Abate and W. Whitt, “An operational calculus for probability distributions via Laplace transforms,” Adv. in Appl. Probab., vol. 28, no. 1, pp. 75–113, 1996, doi: 10.2307/1427914.
O. G. Bravo, “On the optimal domain of the Laplace transform,” Bull. Malays. Math. Sci. Soc., vol. 40, no. 1, pp. 389–408, 2017, doi: 10.1007/s40840-016-0402-7.
E. Buriánková, D. E. Edmunds, and L. Pick, “Optimal function spaces for the Laplace transform,” Rev. Mat. Complut., vol. 30, no. 3, pp. 451–465, 2017, doi: 10.1007/s13163-017-0234-5.
R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, ser. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016, doi: 10.1007/978-3-319-30034-4.
N. Dunford and J. T. Schwartz, Linear operators. Part I, ser. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988, reprint of the 1958 original, A Wiley-Interscience Publication.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “The weighted Laplace transform,” in Functional analysis and geometry: Selim Grigorievich Krein centennial, ser. Contemp. Math. Amer. Math. Soc., [Providence], RI, 2019, vol. 733, pp. 175–184, doi: 10.1090/conm/733/14741.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “Spectral representation of the weighted Laplace transform,” Appl. Math. Lett., vol. 102, pp. 106136, 8, 2020, doi: 10.1016/j.aml.2019.106136.
Z. Ndiku, “Laplace transform in probability distributions and in pure birth processes,” Ph.D. dissertation, University of Nairobi, 2015.
S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators, ser. Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008, vol. 180.
A. G. Rossberg, “Laplace transforms of probability distributions and their inversions are easy on logarithmic scales,” J. Appl. Probab., vol. 45, no. 2, pp. 531–541, 2008, doi: 10.1239/jap/1214950365.
E. Setterqvist, “Unitary equivalence. A new approach to the Laplace transform and the hardy operator,” M.Sc. thesis, Luleå University of Technology, 2005, Available: https: //www.diva-portal.org/smash/get/diva2:1032398/FULLTEXT01.pdf .
Most read articles by the same author(s)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
Similar Articles
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- A. Bultheel, H. Mart´Ä±nez, An introduction to the Fractional Fourier Transform and friends , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- S. Richard, R. Tiedra de Aldecoa, Commutator criteria for strong mixing II. More general and simpler , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Yasuyuki Oka, On the Weyl transform with symbol in the Gel‘fand-Shilov space and its dual space , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- M.H. Saleh, D.Sh. Mohammed, Numerical solution of singular and non singular integral equations , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Chirine Chettaoui, An other uncertainty principle for the Hankel transform , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. Castillo et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.