\(L_p\)-boundedness of the Laplace transform
-
René Erlín Castillo
recastillo@unal.edu.co
-
Héctor Camilo Chaparro
hchaparrog@unicartagena.edu.co
-
Julio César Ramos-Fernández
jcramosf@udistrital.edu.co
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.359Abstract
In this paper, we discuss about the boundedness of the Laplace transform \(\mathcal{L}: L_p([0,\infty))\rightarrow L_p(A)\) (\(p\geq1\)) for the cases \(A=[0, \infty)\), \(A=[1, \infty)\) and \(A=[0, 1]\). We also provide examples for the cases where \(\mathcal{L}\) is unbounded.
Keywords
Mathematics Subject Classification:
J. Abate and W. Whitt, “An operational calculus for probability distributions via Laplace transforms,” Adv. in Appl. Probab., vol. 28, no. 1, pp. 75–113, 1996, doi: 10.2307/1427914.
O. G. Bravo, “On the optimal domain of the Laplace transform,” Bull. Malays. Math. Sci. Soc., vol. 40, no. 1, pp. 389–408, 2017, doi: 10.1007/s40840-016-0402-7.
E. Buriánková, D. E. Edmunds, and L. Pick, “Optimal function spaces for the Laplace transform,” Rev. Mat. Complut., vol. 30, no. 3, pp. 451–465, 2017, doi: 10.1007/s13163-017-0234-5.
R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, ser. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016, doi: 10.1007/978-3-319-30034-4.
N. Dunford and J. T. Schwartz, Linear operators. Part I, ser. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988, reprint of the 1958 original, A Wiley-Interscience Publication.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “The weighted Laplace transform,” in Functional analysis and geometry: Selim Grigorievich Krein centennial, ser. Contemp. Math. Amer. Math. Soc., [Providence], RI, 2019, vol. 733, pp. 175–184, doi: 10.1090/conm/733/14741.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “Spectral representation of the weighted Laplace transform,” Appl. Math. Lett., vol. 102, pp. 106136, 8, 2020, doi: 10.1016/j.aml.2019.106136.
Z. Ndiku, “Laplace transform in probability distributions and in pure birth processes,” Ph.D. dissertation, University of Nairobi, 2015.
S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators, ser. Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008, vol. 180.
A. G. Rossberg, “Laplace transforms of probability distributions and their inversions are easy on logarithmic scales,” J. Appl. Probab., vol. 45, no. 2, pp. 531–541, 2008, doi: 10.1239/jap/1214950365.
E. Setterqvist, “Unitary equivalence. A new approach to the Laplace transform and the hardy operator,” M.Sc. thesis, Luleå University of Technology, 2005, Available: https: //www.diva-portal.org/smash/get/diva2:1032398/FULLTEXT01.pdf .
Most read articles by the same author(s)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
Similar Articles
- George A. Anastassiou, ð˜²âˆ’ fractional inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Benjamín Castillo, Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov , CUBO, A Mathematical Journal: In Press
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Tomonari Suzuki, Browder Convergence and Mosco Convergence for Families of Nonexpansive Mappings , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Martin V¨ath, A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Fatih Nuray, Richard F. Patterson, Submatrices of four dimensional summability matrices , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. Castillo et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.