\(L_p\)-boundedness of the Laplace transform

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2602.359

Abstract

In this paper, we discuss about the boundedness of the Laplace transform \(\mathcal{L}: L_p([0,\infty))\rightarrow L_p(A)\) (\(p\geq1\)) for the cases \(A=[0, \infty)\), \(A=[1, \infty)\) and \(A=[0, 1]\). We also provide examples for the cases where \(\mathcal{L}\) is unbounded.

Keywords

Laplace transform , Integral transform , \(L_p\)-strong boundedness

Mathematics Subject Classification:

44A10 , 46E30
  • Pages: 359–366
  • Date Published: 2024-08-27
  • Vol. 26 No. 2 (2024)

J. Abate and W. Whitt, “An operational calculus for probability distributions via Laplace transforms,” Adv. in Appl. Probab., vol. 28, no. 1, pp. 75–113, 1996, doi: 10.2307/1427914.

O. G. Bravo, “On the optimal domain of the Laplace transform,” Bull. Malays. Math. Sci. Soc., vol. 40, no. 1, pp. 389–408, 2017, doi: 10.1007/s40840-016-0402-7.

E. Buriánková, D. E. Edmunds, and L. Pick, “Optimal function spaces for the Laplace transform,” Rev. Mat. Complut., vol. 30, no. 3, pp. 451–465, 2017, doi: 10.1007/s13163-017-0234-5.

R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, ser. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016, doi: 10.1007/978-3-319-30034-4.

N. Dunford and J. T. Schwartz, Linear operators. Part I, ser. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988, reprint of the 1958 original, A Wiley-Interscience Publication.

G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “The weighted Laplace transform,” in Functional analysis and geometry: Selim Grigorievich Krein centennial, ser. Contemp. Math. Amer. Math. Soc., [Providence], RI, 2019, vol. 733, pp. 175–184, doi: 10.1090/conm/733/14741.

G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “Spectral representation of the weighted Laplace transform,” Appl. Math. Lett., vol. 102, pp. 106136, 8, 2020, doi: 10.1016/j.aml.2019.106136.

Z. Ndiku, “Laplace transform in probability distributions and in pure birth processes,” Ph.D. dissertation, University of Nairobi, 2015.

S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators, ser. Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008, vol. 180.

A. G. Rossberg, “Laplace transforms of probability distributions and their inversions are easy on logarithmic scales,” J. Appl. Probab., vol. 45, no. 2, pp. 531–541, 2008, doi: 10.1239/jap/1214950365.

E. Setterqvist, “Unitary equivalence. A new approach to the Laplace transform and the hardy operator,” M.Sc. thesis, Luleå University of Technology, 2005, Available: https: //www.diva-portal.org/smash/get/diva2:1032398/FULLTEXT01.pdf .

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2024-08-27

How to Cite

[1]
R. E. Castillo, H. C. Chaparro, and J. C. Ramos-Fernández, “\(L_p\)-boundedness of the Laplace transform”, CUBO, vol. 26, no. 2, pp. 359–366, Aug. 2024.

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.