\(L_p\)-boundedness of the Laplace transform
-
René Erlín Castillo
recastillo@unal.edu.co
-
Héctor Camilo Chaparro
hchaparrog@unicartagena.edu.co
-
Julio César Ramos-Fernández
jcramosf@udistrital.edu.co
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.359Abstract
In this paper, we discuss about the boundedness of the Laplace transform \(\mathcal{L}: L_p([0,\infty))\rightarrow L_p(A)\) (\(p\geq1\)) for the cases \(A=[0, \infty)\), \(A=[1, \infty)\) and \(A=[0, 1]\). We also provide examples for the cases where \(\mathcal{L}\) is unbounded.
Keywords
Mathematics Subject Classification:
J. Abate and W. Whitt, “An operational calculus for probability distributions via Laplace transforms,” Adv. in Appl. Probab., vol. 28, no. 1, pp. 75–113, 1996, doi: 10.2307/1427914.
O. G. Bravo, “On the optimal domain of the Laplace transform,” Bull. Malays. Math. Sci. Soc., vol. 40, no. 1, pp. 389–408, 2017, doi: 10.1007/s40840-016-0402-7.
E. Buriánková, D. E. Edmunds, and L. Pick, “Optimal function spaces for the Laplace transform,” Rev. Mat. Complut., vol. 30, no. 3, pp. 451–465, 2017, doi: 10.1007/s13163-017-0234-5.
R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, ser. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016, doi: 10.1007/978-3-319-30034-4.
N. Dunford and J. T. Schwartz, Linear operators. Part I, ser. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988, reprint of the 1958 original, A Wiley-Interscience Publication.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “The weighted Laplace transform,” in Functional analysis and geometry: Selim Grigorievich Krein centennial, ser. Contemp. Math. Amer. Math. Soc., [Providence], RI, 2019, vol. 733, pp. 175–184, doi: 10.1090/conm/733/14741.
G. R. Goldstein, J. A. Goldstein, G. Metafune, and L. Negro, “Spectral representation of the weighted Laplace transform,” Appl. Math. Lett., vol. 102, pp. 106136, 8, 2020, doi: 10.1016/j.aml.2019.106136.
Z. Ndiku, “Laplace transform in probability distributions and in pure birth processes,” Ph.D. dissertation, University of Nairobi, 2015.
S. Okada, W. J. Ricker, and E. A. Sánchez Pérez, Optimal domain and integral extension of operators, ser. Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2008, vol. 180.
A. G. Rossberg, “Laplace transforms of probability distributions and their inversions are easy on logarithmic scales,” J. Appl. Probab., vol. 45, no. 2, pp. 531–541, 2008, doi: 10.1239/jap/1214950365.
E. Setterqvist, “Unitary equivalence. A new approach to the Laplace transform and the hardy operator,” M.Sc. thesis, Luleå University of Technology, 2005, Available: https: //www.diva-portal.org/smash/get/diva2:1032398/FULLTEXT01.pdf .
Most read articles by the same author(s)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
Similar Articles
- Colette Anné, Colette Anné, A topological definition of the Maslov bundle , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Hleili Khaled, Omri Slim, Lakhdar Rachdi, Uncertainty principle for the Riemann-Liouville operator , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- George A. Anastassiou, Fuzzy Taylor Formulae , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- George A. Anastassiou, ð˜²âˆ’ fractional inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Augustin Banyaga, On the group of strong symplectic homeomorphisms , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Agostino Prástaro, Integral Bordisms and Green Kernels in PDEs , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. Castillo et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.