Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions
-
Rupali Shinde
rupalishinde260@gmail.com
-
Christophe Chesneau
chesneau.christophe@gmail.com
-
Nitin Darkunde
darkundenitin@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.431Abstract
In 2019, Bagul et al. posed two open problems dealing with inequalities involving trigonometric and hyperbolic functions and an adjustable parameter. This article is an attempt to solve these open problems. The results are supported by three-dimensional graphics, taking into account the variation of the parameter involved.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington, DC, 1964, vol. 55.
Y. J. Bagul, R. M. Dhaigude, M. Kostić, and C. Chesneau, “Polynomial-exponential bounds for some trigonometric and hyperbolic functions,” Axioms, vol. 10, no. 4, 2021, Art. ID 308, doi: 10.3390/axioms10040308.
Y. J. Bagul and C. Chesneau, “Two double sided inequalities involving sinc and hyperbolic sinc functions,” Int. J. Open Problems Compt. Math., vol. 12, no. 4, pp. 15–20, 2019.
Y. J. Bagul and C. Chesneau, “Refined forms of Oppenheim and Cusa-Huygens type inequalities,” Acta Comment. Univ. Tartu. Math., vol. 24, no. 2, pp. 183–194, 2020.
A. R. Chouikha, “New sharp inequalities related to classical trigonometric inequalities,” J. Inequal. Spec. Funct., vol. 11, no. 4, pp. 27–35, 2020.
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 8th ed. Else- vier/Academic Press, Amsterdam, 2015.
R. Klén, M. Visuri, and M. Vuorinen, “On Jordan type inequalities for hyperbolic functions,” J. Inequal. Appl., 2010, Art. ID 362548, doi: 10.1155/2010/362548.
W.-H. Li and B.-N. Guo, “Several inequalities for bounding sums of two (hyperbolic) sine cardinal functions,” Filomat, vol. 38, no. 11, pp. 3937–3943, 2024.
Y. Lv, G. Wang, and Y. Chu, “A note on Jordan type inequalities for hyperbolic functions,” Appl. Math. Lett., vol. 25, no. 3, pp. 505–508, 2012, doi: 10.1016/j.aml.2011.09.046.
B. Malešević, T. Lutovac, M. Rašajski, and C. Mortici, “Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities,” Adv. Difference Equ., 2018, Art. ID 90, doi: 10.1186/s13662-018-1545-7.
Z.-H. Yang and Y.-M. Chu, “Jordan type inequalities for hyperbolic functions and their applications,” J. Funct. Spaces, 2015, Art. ID 370979, doi 10.1155/2015/370979.
Z.-H. Yang and Y.-M. Chu, “A sharp double inequality involving trigonometric functions and its applications,” J. Math. Inequal., vol. 10, no. 2, pp. 423–432, 2016, doi: 10.7153/jmi-10-33.
Z.-H. Yang, Y.-M. Chu, Y.-Q. Song, and Y.-M. Li, “A sharp double inequality for trigonometric functions and its applications,” Abstr. Appl. Anal., 2014, Art. ID 592085, doi: 10.1155/2014/592085.
Z.-H. Yang, Y.-L. Jiang, Y.-Q. Song, and Y.-M. Chu, “Sharp inequalities for trigonometric functions,” Abstr. Appl. Anal., pp. Art. ID 601 839, 18, 2014, doi: 10.1155/2014/601839.
L. Zhu, “New Masjed Jamei–type inequalities for inverse trigonometric and inverse hyperbolic functions,” Mathematics, vol. 10, no. 16, 2022, Art. ID 2972, doi: 10.3390/math10162972.
- CSMNRF-2022
Most read articles by the same author(s)
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
Similar Articles
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M. Fakhar, J. Zafarani, A New Version of Fan‘s Theorem and its Applications , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- D. Goeleven, An Expository Discussion on Singular Inequality Problems and Equilibrium Models in Economics , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Pablo Marshall, Modelos estructurales para series cronológicas , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. Shinde et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.