Solutions of two open problems on inequalities involving trigonometric and hyperbolic functions
-
Rupali Shinde
rupalishinde260@gmail.com
-
Christophe Chesneau
chesneau.christophe@gmail.com
-
Nitin Darkunde
darkundenitin@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.431Abstract
In 2019, Bagul et al. posed two open problems dealing with inequalities involving trigonometric and hyperbolic functions and an adjustable parameter. This article is an attempt to solve these open problems. The results are supported by three-dimensional graphics, taking into account the variation of the parameter involved.
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U.S. Government Printing Office, Washington, DC, 1964, vol. 55.
Y. J. Bagul, R. M. Dhaigude, M. Kostić, and C. Chesneau, “Polynomial-exponential bounds for some trigonometric and hyperbolic functions,” Axioms, vol. 10, no. 4, 2021, Art. ID 308, doi: 10.3390/axioms10040308.
Y. J. Bagul and C. Chesneau, “Two double sided inequalities involving sinc and hyperbolic sinc functions,” Int. J. Open Problems Compt. Math., vol. 12, no. 4, pp. 15–20, 2019.
Y. J. Bagul and C. Chesneau, “Refined forms of Oppenheim and Cusa-Huygens type inequalities,” Acta Comment. Univ. Tartu. Math., vol. 24, no. 2, pp. 183–194, 2020.
A. R. Chouikha, “New sharp inequalities related to classical trigonometric inequalities,” J. Inequal. Spec. Funct., vol. 11, no. 4, pp. 27–35, 2020.
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 8th ed. Else- vier/Academic Press, Amsterdam, 2015.
R. Klén, M. Visuri, and M. Vuorinen, “On Jordan type inequalities for hyperbolic functions,” J. Inequal. Appl., 2010, Art. ID 362548, doi: 10.1155/2010/362548.
W.-H. Li and B.-N. Guo, “Several inequalities for bounding sums of two (hyperbolic) sine cardinal functions,” Filomat, vol. 38, no. 11, pp. 3937–3943, 2024.
Y. Lv, G. Wang, and Y. Chu, “A note on Jordan type inequalities for hyperbolic functions,” Appl. Math. Lett., vol. 25, no. 3, pp. 505–508, 2012, doi: 10.1016/j.aml.2011.09.046.
B. Malešević, T. Lutovac, M. Rašajski, and C. Mortici, “Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities,” Adv. Difference Equ., 2018, Art. ID 90, doi: 10.1186/s13662-018-1545-7.
Z.-H. Yang and Y.-M. Chu, “Jordan type inequalities for hyperbolic functions and their applications,” J. Funct. Spaces, 2015, Art. ID 370979, doi 10.1155/2015/370979.
Z.-H. Yang and Y.-M. Chu, “A sharp double inequality involving trigonometric functions and its applications,” J. Math. Inequal., vol. 10, no. 2, pp. 423–432, 2016, doi: 10.7153/jmi-10-33.
Z.-H. Yang, Y.-M. Chu, Y.-Q. Song, and Y.-M. Li, “A sharp double inequality for trigonometric functions and its applications,” Abstr. Appl. Anal., 2014, Art. ID 592085, doi: 10.1155/2014/592085.
Z.-H. Yang, Y.-L. Jiang, Y.-Q. Song, and Y.-M. Chu, “Sharp inequalities for trigonometric functions,” Abstr. Appl. Anal., pp. Art. ID 601 839, 18, 2014, doi: 10.1155/2014/601839.
L. Zhu, “New Masjed Jamei–type inequalities for inverse trigonometric and inverse hyperbolic functions,” Mathematics, vol. 10, no. 16, 2022, Art. ID 2972, doi: 10.3390/math10162972.
- CSMNRF-2022
Most read articles by the same author(s)
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
Similar Articles
- Francisco Brito, Many-Ended Complete Minimal Surfaces Between Two Parallel Planes in ℳ , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Saulius Minkevicius, Analysis of the Component-Based Reliability in Computer Networks , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Ismael Bleyer, A. Leitão, On Tikhonov Functionals Penalized by Bregman Distances , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. Shinde et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.