Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy
-
Abdoul Aziz Kalifa Dianda
douaziz01@yahoo.fr
-
Khalil Ezzinbi
ezzinbi@uca.ac.ma
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.029Abstract
In this work, we prove the existence and uniqueness of \(\mu\)-pseudo almost automorphic solutions for a class of semilinear nonautonomous evolution equations of the form: \(u'(t)=A(t)u(t)+f(t,u(t)),\; t\in\mathbb{R}\) where \((A(t))_{t\in \mathbb{R}}\) is a family of closed linear operators acting in a Banach space \( X \) that generates an evolution family having an integrable dichotomy on \( \mathbb{R} \) and \( f : \mathbb{R} \times X \to X \) is \( \mu \)-pseudo almost automorphic with respect to \(t\) and Lipshitzian in the second variable. Moreover we provide an application illustrating our results.
Keywords
Mathematics Subject Classification:
L. Abadias, E. Alvarez, and R. Grau, “(ω,c)-periodic mild solutions to non-autonomous abstract differential equations,” Mathematics, vol. 9, no. 5, 2021, Art. ID 474, doi: 10.3390/math9050474.
A.-N. Akdad, B. Essebbar, and K. Ezzinbi, “Composition theorems of Stepanov µ-pseudo almost automorphic functions and applications to nonautonomous neutral evolution equations,” Differ. Equ. Dyn. Syst., vol. 25, no. 3, pp. 397–416, 2017, doi: 10.1007/s12591-015-0246-x.
M. Baroun, K. Ezzinbi, K. Khalil, and L. Maniar, “Almost automorphic solutions for nonautonomous parabolic evolution equations,” Semigroup Forum, vol. 99, no. 3, pp. 525–567, 2019, doi: 10.1007/s00233-019-10045-w.
J. Blot, G. M. Mophou, G. M. N’Guérékata, and D. Pennequin, “Weighted pseudo almost automorphic functions and applications to abstract differential equations,” Nonlinear Anal., vol. 71, no. 3-4, pp. 903–909, 2009.
J. Blot, P. Cieutat, and K. Ezzinbi “Measure theory and pseudo almost automorphic functions: new developments and applications,” Nonlinear Anal., vol. 75, no. 4, pp. 2426–2447, 2012, doi: 10.1016/j.na.2011.10.041.
J. Blot, P. Cieutat, and K. Ezzinbi, “New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications,” Appl. Anal., vol. 92, no. 3, pp. 493–526, 2013, doi: 10.1080/00036811.2011.628941.
J. Blot, P. Cieutat, G. M. N’Guérékata, and D. Pennequin, “Superposition operators between various almost periodic function spaces and applications,” Commun. Math. Anal., vol. 6, no. 1, pp. 42–70, 2009.
S. Bochner, “Uniform convergence of monotone sequences of functions,” Proc. Nat. Acad. Sci. U.S.A., vol. 47, pp. 582–585, 1961, doi: 10.1073/pnas.47.4.582.
S. Bochner, “A new approach to almost periodicity,” Proc. Nat. Acad. Sci. U.S.A., vol. 48, pp. 2039–2043, 1962, doi: 10.1073/pnas.48.12.2039.
S. Bochner, “Continuous mappings of almost automorphic and almost periodic functions,” Proc. Nat. Acad. Sci. U.S.A., vol. 52, pp. 907–910, 1964, doi: 10.1073/pnas.52.4.907.
S. Bochner and J. Von Neumann, “On compact solutions of operational-differential equations. I,” Ann. of Math. (2), vol. 36, no. 1, pp. 255–291, 1935.
H. Bohr, “Zur Theorie der fastperiodischen Funktionen. I. Eine Verallgemeinerung der Theorie der Fourierreihen.” Acta Math., vol. 45, pp. 29–127, 1924, doi: 10.1007/BF02395468.
W. Coppel, Stability and Asymptotic Behaviour of Differential Equations, ser. Heath and mathematical monographs. Heath, 1965.
T. Diagana, “Existence of p-almost automorphic mild solution to some abstract differential equations,” Int. J. Evol. Equ., vol. 1, no. 1, pp. 57–67, 2005.
K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 2000, vol. 194.
B. Es-sebbar and K. Ezzinbi, “Stepanov ergodic perturbations for some neutral partial functional differential equations,” Math. Methods Appl. Sci., vol. 39, no. 8, pp. 1945–1963, 2016, doi: 10.1002/mma.3611.
K. Ezzinbi, S. Fatajou, and G. M. N’guérékata, “Pseudo-almost-automorphic solutions to some neutral partial functional differential equations in Banach spaces,” Nonlinear Anal., vol. 70, no. 4, pp. 1641–1647, 2009, doi: 10.1016/j.na.2008.02.039.
J. Hong, R. Obaya, and A. Sanz, “Almost periodic type solutions of some differential equations with piecewise constant argument,” Nonlinear Anal., vol. 45, no. 6, pp. 661–688, 2001, doi: 10.1016/S0362-546X(98)00296-X.
J.-h. Liu and X.-q. Song, “Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations,” J. Funct. Anal., vol. 258, no. 1, pp. 196–207, 2010, doi: 10.1016/j.jfa.2009.06.007.
A. Pazy, Semigroups of linear operators and applications to partial differential equations, ser. Applied Mathematical Sciences. Springer-Verlag, New York, 1983, vol. 44, doi: 10.1007/978-1-4612-5561-1.
M. Pinto, “Bounded and periodic solutions of nonlinear integro-differential equations with infinite delay,” Electron. J. Qual. Theory Differ. Equ., pp. No. 46, 20, 2009, doi: 10.14232/ejqtde.2009.1.46.
M. Pinto and C. Vidal, “Pseudo-almost-periodic solutions for delayed differential equations with integral dichotomies and bi-almost-periodic Green functions,” Math. Methods Appl. Sci., vol. 40, no. 18, pp. 6998–7012, 2017, doi: 10.1002/mma.4507.
Z. Xia, “Pseudo asymptotic behavior of mild solution for nonautonomous integrodifferential equations with nondense domain,” J. Appl. Math., 2014, Art. ID 419103, doi: 10.1155/2014/419103.
T.-J. Xiao, J. Liang, and J. Zhang, “Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces,” Semigroup Forum, vol. 76, no. 3, pp. 518–524, 2008, doi: 10.1007/s00233-007-9011-y.
C. Y. Zhang, “Pseudo-almost-periodic solutions of some differential equations,” J. Math. Anal. Appl., vol. 181, no. 1, pp. 62–76, 1994, doi: 10.1006/jmaa.1994.1005.
R. Zhang, Y.-K. Chang, and G. M. N’Guérékata, “New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations,” Nonlinear Anal. Real World Appl., vol. 13, no. 6, pp. 2866–2879, 2012, doi: 10.1016/j.nonrwa.2012.04.016.
Most read articles by the same author(s)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Toka Diagana, Khalil Ezzinbi, Mohsen Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Khalil Ezzinbi, Valerie Nelson, Gaston N‘Gu´er´ekata, ð¶â½â¿â¾-Almost Automorphic Solutions of Some Nonautonomous Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
Similar Articles
- Shigeki Matsutani, Relations of al Functions over Subvarieties in a Hyperelliptic Jacobian , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Alka Chadha, Dwijendra N Pandey, Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Bouzid Mansouri, Abdelouaheb Ardjouni, Ahcene Djoudi, Periodicity and stability in neutral nonlinear differential equations by Krasnoselskii‘s fixed point theorem , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Peng Chen, Hui-Sheng Ding, Gaston M. N‘Guérékata, Positive asymptotically almost periodic solutions of an impulsive hematopoiesis model , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Cemil Tunc, On the uniform asymptotic stability to certain first order neutral differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Roberto Dieci, Gian-Italo Bishi, Laura Gardini, Routes to Complexity in a Macroeconomic Model Described by a Noninvertible Triangular Map , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive Solutions for Systems of Three-point Nonlinear Boundary Value Problems with Deviating Arguments , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- E. A. Eljamal, M. Darus, Majorization for certain classes of analytic functions defined by a new operator , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 A. A. K. Dianda et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











