Congruences of infinite semidistributive lattices
-
George Grätzer
gratzer@mac.com
-
J. B. Nation
jb@math.hawaii.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.083Abstract
Not every finite distributive lattice is isomorphic to the congruence lattice of a finite semidistributive lattice. This note provides a construction showing that many of these finite distributive lattices are isomorphic to congruence lattices of infinite semidistributive lattices.
Keywords
Mathematics Subject Classification:
K. Adaricheva and J. B. Nation, “Classes of semidistributive lattices,” in Lattice theory: special topics and applications. Vol. 2. Birkhäuser/Springer, Cham, 2016, pp. 59–101.
K. Adaricheva, R. Freese, and J. B. Nation, “Notes on join semidistributive lattices,” Internat. J. Algebra Comput., vol. 32, no. 2, pp. 347–356, 2022, doi: 10.1142/S0218196722500175.
R. Freese and J. B. Nation, “A simple semidistributive lattice with doubly irreducible elements,” 2024, https://math.hawaii.edu/∼ jb/simple_semidistributive_DI.pdf.
R. Freese and J. B. Nation, “A simple semidistributive lattice,” Internat. J. Algebra Comput., vol. 31, no. 2, pp. 219–224, 2021, doi: 10.1142/S0218196721500119.
G. Grätzer and J. B. Nation, “Congruence lattices of infinite semidistributive lattices,” 2024, https://math.hawaii.edu/∼ jb/ConSDtrees.pdf.
B. Jónsson, “Sublattices of a free lattice,” Canadian J. Math., vol. 13, pp. 256–264, 1961, doi: 10.4153/CJM-1961-021-0.
B. Jónsson and J. E. Kiefer, “Finite sublattices of a free lattice,” Canadian J. Math., vol. 14, pp. 487–497, 1962, doi: 10.4153/CJM-1962-040-1.
B. Jónsson and I. Rival, “Lattice varieties covering the smallest nonmodular variety,” Pacific J. Math., vol. 82, no. 2, pp. 463–478, 1979.
J. B. Nation, “Congruences of finite semidistributive lattices,” Cubo, vol. 26, no. 3, pp. 443–473, 2024, doi: 10.56754/0719-0646.2603.443.
Most read articles by the same author(s)
- J. B. Nation, Congruences of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
Similar Articles
- J. B. Nation, Congruences of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Andrew Craig, Miroslav Haviar, José São João, Dual digraphs of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Tom M. Apostol, Lattice Points , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Ana Cecilia de la Maza, Remo Moresi, On rigid Hermitean lattices, II , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Colette Anné, Anne-Marie Charbonnel, Bohr-Sommerfeld conditions for several commuting Hamiltonians , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 G. Grätzer et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.