Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces
-
Juan D. Cardona-Gutierrez
jdcardona@math.cinvestav.edu.mx
-
Julio C. Ramos-Fernández
jcramosf@udistrital.edu.co
-
Harold Vacca-González
hvacca@udistrital.edu.co
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.119Abstract
This paper investigates the properties of weighted composition operators acting between different weighted \(l^p\) spaces. Inspired by recent advancements in the field, we explore criteria for the continuity and compactness of these operators. Specifically, we provide simple conditions, in terms of normalized canonical sequences, for the continuity and compactness of the difference between two weighted composition operators, \( W_{\varphi,u} \) and \(W_{\psi,v}\). Furthermore, we calculate the essential norm of these operators. Our results extend and generalize previous works, offering new insights into the behavior of weighted composition operators in Banach sequence spaces. The findings contribute to the understanding of these operators' topological properties, particularly their applications in sequence spaces and functional analysis.
Keywords
Mathematics Subject Classification:
A. A. Albanese, J. Bonet, and W. J. Ricker, “Multiplier and averaging operators in the Banach spaces ces(p), 1
A. A. Albanese and C. Mele, “Topological properties of weighted composition operators in sequence spaces,” Results Math., vol. 78, no. 6, 2023, Art. ID 210, doi: 10.1007/s00025-023-01992-6.
G. M. Antón Marval, R. E. Castillo, and J. C. Ramos-Fernández, “Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces,” Cubo, vol. 19, no. 1, pp. 39–51, 2017, doi: 10.4067/s0719-06462017000100003.
J. D. Cardona-Gutierrez, J. C. Ramos Fernández, and M. Salas-Brown, “Fredholm weighted composition operators between weighted lp spaces: a simple process point of view,” Analysis (Berlin), vol. 44, no. 2, pp. 85–92, 2024, doi: 10.1515/anly-2022-1080.
C. Carpintero, J. C. Ramos-Fernández, and J. E. Sanabria, “Weighted composition operators between two different weighted sequence spaces,” Adv. Pure Appl. Math., vol. 13, no. 2, pp. 29–42, 2022, doi: 10.21494/iste.op.2022.0811.
R. E. Castillo, J. C. Ramos-Fernández, and M. Salas-Brown, “The essential norm of multiplication operators on Lorentz sequence spaces,” Real Anal. Exchange, vol. 41, no. 1, pp. 245–251, 2016.
M. D. Contreras and A. G. Hernandez-Diaz, “Weighted composition operators in weighted Banach spaces of analytic functions,” J. Austral. Math. Soc. Ser. A, vol. 69, no. 1, pp. 41–60, 2000.
M. L. Doan and L. H. Khoi, “Hilbert spaces of entire functions and composition operators,” Complex Anal. Oper. Theory, vol. 10, no. 1, pp. 213–230, 2016, doi: 10.1007/s11785-015-0497-0.
H. Hudzik, R. Kumar, and R. Kumar, “Matrix multiplication operators on Banach function spaces,” Proc. Indian Acad. Sci. Math. Sci., vol. 116, no. 1, pp. 71–81, 2006, doi: 10.1007/BF02829740.
D. M. Luan and L. H. Khoi, “Weighted composition operators on weighted sequence spaces,” in Function spaces in analysis, ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2015, vol. 645, pp. 199–215, doi: 10.1090/conm/645/12907.
A. Montes-Rodríguez, “Weighted composition operators on weighted Banach spaces of analytic functions,” J. London Math. Soc. (2), vol. 61, no. 3, pp. 872–884, 2000, doi: 10.1112/S0024610700008875.
J. C. Ramos-Fernández, “Composition operators between µ-Bloch spaces,” Extracta Math., vol. 26, no. 1, pp. 75–88, 2011.
J. C. Ramos Fernández, “On the norm and the essential norm of weighted composition operators acting on the weighted Banach space of analytic functions,” Quaest. Math., vol. 39, no. 4, pp. 497–509, 2016, doi: 10.2989/16073606.2015.1096855.
J. C. Ramos-Fernández and M. Salas-Brown, “On multiplication operators acting on Köthe sequence spaces,” Afr. Mat., vol. 28, no. 3-4, pp. 661–667, 2017, doi: 10.1007/s13370-016-0475-3.
R. K. Singh and J. S. Manhas, Composition operators on function spaces, ser. North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1993, vol. 179.
Most read articles by the same author(s)
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
Similar Articles
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Abdellatif Moudafi, Computing the resolvent of composite operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Aris Aghanians, Donal O‘Regan, Kamal Fallahi, Kourosh Nourouzi, Some coupled coincidence point theorems in partially ordered uniform spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Elena Cordero, Davide Zucco, Strichartz estimates for the Schrödinger equation , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 J. D. Cardona-Gutierrez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











