Ciclos límite en el plano: Contribuciones desde Chile

Limit cycles in the plane: Contributions from Chile

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.391

Abstract

This article aims to highlight some important contributions made from Chile to the study of limit cycles of polynomial differential systems in the real plane, concerning the second half of Hilbert's sixteenth problem. This work is based on two main motivations: on the one hand, some of the results we analyze have not received the attention they deserve; and on the other hand, we expect renewed momentum in the coming decades in the study of limit cycles of polynomial differential systems. The results we present are situated within the international landscape, and we examine research challenges in this field.

Resumen

El objetivo de este artículo es destacar algunas contribuciones significativas realizadas desde Chile al estudio de ciclos límite en sistemas diferenciales polinomiales en el plano real, en relación con la segunda parte del problema 16 de Hilbert. Este trabajo se fundamenta en dos motivaciones principales: por una parte, algunos de los resultados analizados no han recibido la difusión que merecen; por otra, se anticipa un nuevo impulso en las próximas décadas en el estudio de los ciclos límite en sistemas diferenciales polinomiales. Los aportes presentados se sitúan dentro del panorama internacional y se examinan desafíos de investigación en este campo.

Keywords

Limit cycle , periodic orbit , differential system , Hilbert’s sixteenth problem

Mathematics Subject Classification:

34C07 , 34C08 , 34C25 , 37G15
  • Pages: 391–410
  • Date Published: 2025-10-15
  • In Press

R. Bamón, “Quadratic vector fields in the plane have a finite number of limit cycles,” Publ. Math., Inst. Hautes Étud. Sci., vol. 64, pp. 111–142, 1986, doi: 10.1007/BF02699193.

N. N. Bautin, “On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type,” in American Mathematical Society Translations, Series 1, Vol. 100. American Mathematical Society, 1954, pp. 397–413, translation from Mat. Sbornik (new series), vol. 30(72), no. 1, pp. 181–196 (1952).

J. Billeke y H. Burgos, “Consideraciones generales sobre campos polinomiales ((y - f(x)) frac{partial}{partial x} + (-x + g(x,y))frac{partial}{partial y}), problemas de estabilidad y ejemplos,” Cubo, vol. 6, pp. 25–46, 1990.

J. Billeke, H. Burgos, y M. Wallace, “Some theorems on the non existence, uniqueness and existence of two limit cycles for the Lienard equation of degree five,” Atti Semin. Mat. Fis. Univ. Modena, vol. 39, no. 1, pp. 11–27, 1991.

J. Billeke, H. Burgos, y M. Wallace, “Melnikov deviations and limit cycles for Liénard equations,” Rev. Colomb. Mat., vol. 26, no. 1-4, pp. 1–24, 1992.

H. Burgos y J. Billeke, “Stability problems of perturbed Liénard equations by polynomials in (frac{partial}{partial y}) direction,” in Las Matemáticas en Costa Rica. Memorias del tercer congreso nacional de matemáticas, Universidad de Costa Rica, San José, Costa Rica, Octubre 15-19, 1990. Vol. 2. San José: Universidad de Costa Rica, 1990, pp. 29–47.

J. Chavarriga, I. A. García, E. Sáez, e I. Szántó, “Limit cycles in Kukles systems of arbitrary degree with invariant ellipse,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, vol. 67, no. 4, pp. 1005–1014, 2007, doi: 10.1016/j.na.2006.06.035.

J. Chavarriga, E. Sáez, I. Szántó, y M. Grau, “Coexistence of limit cycles and invariant algebraic curves for a Kukles system,” Nonlinear Anal., vol. 59, no. 5, pp. 673–693, 2004, doi: 10.1016/j.na.2004.07.028.

L. S. Chen y M. S. Wang, “The relative position, and the number, of limit cycles of a quadratic differential system,” Acta Math. Sinica, vol. 22, no. 6, pp. 751–758, 1979.

C. Christopher y C. Li, Limit cycles of differential equations, ser. Adv. Courses in Math. – CRM Barc. Basel: Birkhäuser, 2007.

H. Dulac, “Sur les cycles limites.” Bull. Soc. Math. Fr., vol. 51, pp. 45–188, 1923, doi: 10.24033/bsmf.1031.

F. Dumortier, R. Roussarie, y C. Rousseau, “Elementary graphics of cyclicity 1 and 2,” Nonlinearity, vol. 7, no. 3, pp. 1001–1043, 1994, doi: 10.1088/0951-7715/7/3/013.

F. Dumortier, R. Roussarie, y C. Rousseau, “Hilbert’s 16th problem for quadratic vector fields,” J. Differ. Equations, vol. 110, no. 1, pp. 86–133, 1994, doi: 10.1006/jdeq.1994.1061.

J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Paris: Hermann, Éditeurs des Sciences et des Arts., 1992.

J. P. Francoise, “Successive derivatives of a first return map, application to the study of quadratic vector fields,” Ergodic Theory Dyn. Syst., vol. 16, no. 1, pp. 87–96, 1996, doi: 10.1017/S0143385700008725.

V. Guíñez, E. Sáez, e I. Szántó, “Small amplitude limit cycles for cubic systems,” Can. Math. Bull., vol. 36, no. 1, pp. 54–63, 1993, doi: 10.4153/CMB-1993-009-4.

V. Guíñez, E. Sáez, e I. Szántó, “Limit cycles close to infinity of certain nonlinear differential equations,” Can. Math. Bull., vol. 33, no. 1, pp. 55–59, 1990, doi: 10.4153/CMB-1990-009-8.

D. Hilbert, “Mathematical problems.” Bull. Am. Math. Soc., New Ser., vol. 37, no. 4, pp. 407–436, 2000, doi: 10.1090/S0273-0979-00-00881-8. Reprinted from Bull. Am. Math. Soc. 8, 437–479 (1902).

Y. Ilyashenko, “Dulac’s memoir ‘On limit cycles’ and related questions of the local theory of differential equations.” Russian Math. Surveys, vol. 40, no. 6, pp. 1–49, 1969, doi: 10.1070/RM1985v040n06ABEH003701.

Y. Ilyashenko, “Centennial history of Hilbert’s 16th Problem,” Bull. Am. Math. Soc., New Ser., vol. 39, no. 3, pp. 301–354, 2002, doi: 10.1090/S0273-0979-02-00946-1.

Y. S. Ilyashenko, “The origin of limit cycles under perturbation of the equation (dw/dx = -R_z/R_w), where (R(z,w)) is a polynomial,” Mat. Sb. (N.S.), vol. 7, pp. 353–364, 1969, doi: 10.1070/SM1969v007n03ABEH001094.

Y. S. Il’yashenko, “Limit cycles of polynomial vector fields with nondegenerate singular points on the real plane,” Funct. Anal. Appl., vol. 18, pp. 199–209, 1984, doi: 10.1007/BF01086157.

Y. S. Il’yashenko, Finiteness theorems for limit cycles, ser. Transl. Math. Monogr. Providence, RI: American Mathematical Society, 1991, vol. 94.

E. M. Landis e I. G. Petrovskii, “A letter to the editors,” Mat. Sb. (N.S.), vol. 73(115), no. 1, p. 160, 1967, doi: 10.1070/SM1967v002n01ABEH002332.

A. Lins, W. de Melo, y C. Pugh, “On Liénard’s equation with linear damping,” in Geometry and Topology, ser. Lecture Notes in Mathematics, J. Palis y M. do Carmo, Eds. Berlin: Springer-Verlag, 1977, vol. 597, pp. 335–357.

Z. Liu, E. Sáez, e I. Szántó, “Limit cycles and invariant parabola in a Kukles systems of degree three,” Acta Math. Sci., Ser. B, Engl. Ed., vol. 28, no. 4, pp. 865–869, 2008, doi: 10.1016/S0252-9602(08)60087-9.

J. Llibre y G. Rodríguez, “Configurations of limit cycles and planar polynomial vector fields.” J. Differ. Equations, vol. 198, no. 2, pp. 374–380, 2004, doi: 10.1016/j.jde.2003.10.008.

N. G. Lloyd, J. M. Pearson, E. Sáez, e I. Szántó, “Limit cycles of a cubic Kolmogorov system,” Appl. Math. Lett., vol. 9, no. 1, pp. 15–18, 1996, doi: 10.1016/0893-9659(95)00095-X.

N. G. Lloyd, J. M. Pearson, E. Sáez, e I. Szántó, “A cubic Kolmogorov system with six limit cycles,” Comput. Math. Appl., vol. 44, no. 3-4, pp. 445–455, 2002, doi: 10.1016/S0898-1221(02)00161-X.

P. Mardešić, M. Saavedra, M. Uribe, y M. Wallace, “Unfolding of the Hamiltonian triangle vector field,” J. Dyn. Control Syst., vol. 17, no. 2, pp. 291–310, 2011, doi: 10.1007/s10883-011-9120-5.

P. Mardešić, M. Saavedra, y M. Uribe, “Principal part of multi-parameter displacement functions,” Bull. Sci. Math., vol. 136, no. 7, pp. 752–762, 2012, doi: 10.1016/j.bulsci.2012.02.006.

L. Perko, Differential equations and dynamical systems, 3rd ed., ser. Texts Appl. Math. New York, NY: Springer, 2001, vol. 7.

I. G. Petrovskii y E. M. Landis, “On the number of limit cycles of the equation (dy/dx = P(x,y)/Q(x,y)), where (P) and (Q) are polynomials of the second degree,” Transl., Ser. 2, Am. Math. Soc., vol. 10, pp. 177–221, 1958, doi: 10.1090/trans2/010/06.

H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle I,” J. Math. Pures Appl., vol. 7, pp. 375–422, 1881.

H. Poincaré, “Mémoire sur les courbes définies par une équation différentielle II,” J. Math. Pures Appl., vol. 8, pp. 251–296, 1882.

H. Poincaré, “Sur les courbes définies par une équation différentielle III,” J. Math. Pures Appl., vol. 1, pp. 167–244, 1885.

H. Poincaré, “Sur les courbes définies par une équation différentielle IV,” J. Math. Pures Appl., vol. 2, pp. 151–217, 1886.

M. Saavedra, “The return time function near a polycycle,” C. R. Acad. Sci., Paris, Sér. I, Math., vol. 330, no. 9, pp. 781–784, 2000, doi: 10.1016/S0764-4442(00)00277-9.

M. Saavedra, “Asymptotic expansion of the period function.” J. Differ. Equations, vol. 193, no. 2, pp. 359–373, 2003, doi: 10.1016/S0022-0396(03)00091-3.

M. Saavedra, “Asymptotic expansion of the period function. II.” J. Differ. Equations, vol. 222, no. 2, pp. 476–486, 2006, doi: 10.1016/j.jde.2005.04.011.

E. Sáez e I. Szántó, “One-parameter family of cubic Kolmogorov systems with an isochronous center,” Collect. Math., vol. 48, no. 3, 1997.

E. Sáez e I. Szántó, “Coexistence of algebraic and nonalgebraic limit cycles in Kukles systems,” Period. Math. Hung., vol. 56, no. 1, pp. 137–142, 2008, doi: 10.1007/s10998-008-5137-y.

E. Sáez e I. Szántó, “Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse,” Appl. Math. Lett., vol. 25, no. 11, pp. 1695–1700, 2012, doi: 10.1016/j.aml.2012.01.039.

S. Shi, “A concrete example of the existence of four limit cycles for plane quadratic systems,” Sci. Sin., vol. 23, pp. 153–158, 1980.

S. Smale, “Problemas matemáticos para el próximo siglo.” Gaceta de la Real Sociedad Matemática Española, vol. 3, no. 3, pp. 413–434, 2000.

A. M. Urbina, M. León de la Barra, G. León de la Barra, y M. Cañas, “Elliptic integrals and limit cycles,” Bull. Aust. Math. Soc., vol. 48, no. 2, pp. 195–200, 1993, doi: 10.1017/S0004972700015641.

A. M. Urbina, G. León de la Barra, M. León de la Barra, y M. Cañas, “Limit cycles of Liénard equations with nonlinear damping,” Can. Math. Bull., vol. 36, no. 2, pp. 251–256, 1993, doi: 10.4153/CMB-1993-036-x.

M. Uribe, “Principal Poincaré-Pontryagin function of polynomial perturbations of the Hamiltonian triangle,” J. Dyn. Control Syst., vol. 12, no. 1, pp. 109–134, 2006, doi: 10.1007/s10450-006-9687-4.

M. Uribe, “Principal Poincaré-Pontryagin function associated to polynomial perturbations of a product of (d+1) straight lines,” J. Differ. Equations, vol. 246, no. 4, pp. 1313–1341, 2009, doi: 10.1016/j.jde.2008.11.014.

M. Yeung, “Dulac’s theorem revisited,” Qual. Theory Dyn. Syst., vol. 24, no. 2, 2025, Art. ID 57, doi: 10.1007/s12346-025-01220-2.

  • DIREG 01/2024
  • ING222010004
  • RE2320122

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-10-15

How to Cite

[1]
J. D. García-Saldaña and S. Rebollo-Perdomo, “Ciclos límite en el plano: Contribuciones desde Chile: Limit cycles in the plane: Contributions from Chile”, CUBO, pp. 391–410, Oct. 2025.

Issue

Section

Surveys

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.