Deformaciones de variedades abelianas con un grupo de automorfismos
Deformations of abelian varieties with an automorphism group
-
U. Guerrero-Valadez
uriel.gva52@gmail.com
-
H. Torres-López
hugo@cimat.mx
-
A. G. Zamora
alexiszamora@uaz.edu.mx
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.343Abstract
Given a polarized abelian variety with an automorphism group \(G\), we prove that the associated local moduli functor is pro-representable, the algebra that pro-represents it is formally smooth, and compute the dimension of this algebra as a function of the analytic action of the group. We present the explicit computations in the case of the action of the symmetric group \(S_3\) on the factors of the product \(E\times E\times E\) of an elliptic curve.
Resumen
Dada una variedad abeliana polarizada con un grupo de automorfismos \(G\), demostramos que el funtor de moduli local asociado es pro-representable; el álgebra que lo pro-representa es formalmente suave y calculamos la dimensión de esta álgebra en función de la acción analítica del grupo. Presentamos los cálculos explícitos del caso de la acción del grupo simétrico \(S_3\) sobre los factores del producto \(E\times E\times E\) de una curva elíptica.
Keywords
Mathematics Subject Classification:
A. Antón-Sancho, “Triality and automorphisms of principal bundles moduli spaces,” Adv. Geom., vol. 24, no. 3, pp. 421–435, 2024, doi: 10.1515/advgeom-2024-0013.
R. Auffarth, A. Carocca, y R. Rodríguez, “Counting polarizations on abelian varieties with group action,” 2024, arXiv:2412.01676.
H. Bennama y J. Bertin, “Remarques sur les varietés abéliennes avec un automorphisme d’ordre premier,” Manuscripta Math., vol. 94, no. 4, pp. 409–425, 1997, doi: 10.1007/BF02677863.
C. Birkenhake y H. Lange, Complex abelian varieties, 2nd ed., ser. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2004, vol. 302, doi: 10.1007/978-3-662-06307-1.
A. Carocca, S. Reyes-Carocca, y R. E. Rodríguez, “Abelian varieties and Riemann surfaces with generalized quaternion group action,” J. Pure Appl. Algebra, vol. 227, no. 11, 2023, Art. ID 107398, doi: 10.1016/j.jpaa.2023.107398.
B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, y A. Vistoli, Fundamental algebraic geometry, ser. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005, vol. 123, doi: 10.1090/surv/123.
W. Fulton y J. Harris, Representation theory, ser. Graduate Texts in Mathematics. Verlag, New York, 1991, vol. 129, doi: 10.1007/978-1-4612-0979-9. Springer-Verlag, New York, 1991, vol. 129, doi: 10.1007/978-1-4612-0979-9.
V. Gonzalez-Aguilera, J. M. Muñoz Porras, y A. G. Zamora, “On the irreducible components of the singular locus of Ag,” J. Algebra, vol. 240, no. 1, pp. 230–250, 2001, doi: 10.1006/jabr.2000.8707.
V. González-Aguilera, J. M. Muñoz Porras, y A. G. Zamora, “On the 0-dimensional irreducible components of the singular locus of Ag,” Arch. Math. (Basel), vol. 84, no. 4, pp. 298–303, 2005, doi: 10.1007/s00013-004-1193-x.
V. González-Aguilera, J. M. Munoz-Porras, y A. G. Zamora, “On the irreducible components of the singular locus of Ag. II,” Proc. Amer. Math. Soc., vol. 140, no. 2, pp. 479–492, 2012, doi: 10.1090/S0002-9939-2011-10933-X.
A. Grothendieck y J. P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1971, vol. 208.
R. Hartshorne, Deformation theory, ser. Graduate Texts in Mathematics. Springer, New York, 2010, vol. 257, doi: 10.1007/978-1-4419-1596-2.
K. Kodaira y D. C. Spencer, “On deformations of complex analytic structures. I, II,” Ann. of Math. (2), vol. 67, pp. 328–466, 1958, doi: 10.2307/1970009.
H. Lange, R. E. Rodríguez, y A. M. Rojas, “Polarizations on abelian subvarieties of principally polarized abelian varieties with dihedral group actions,” Math. Z., vol. 276, no. 1-2, pp. 397–420, 2014, doi: 10.1007/s00209-013-1206-1.
D. Lee y C. Ray, “Automorphisms of abelian varieties and principal polarizations,” Rend. Circ. Mat. Palermo (2), vol. 71, no. 1, pp. 483–494, 2022, doi: 10.1007/s12215-020-00590-7.
H. Matsumura, Commutative ring theory, ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986, vol. 8.
D. Mumford, J. Fogarty, y F. Kirwan, Geometric invariant theory, 3rd ed., ser. Ergebnisse der Mathematik und ihrer Grenzgebiete (2). Springer-Verlag, Berlin, 1994, vol. 34.
D. Mumford, Abelian varieties, ser. Tata Institute of Fundamental Research Studies in Mathematics. Tata Institute of Fundamental Research, Bombay; by Oxford University Press, London, 1970, vol. 5.
F. Oort, “Finite group schemes, local moduli for abelian varieties, and lifting problems,” Compositio Math., vol. 23, pp. 265–296, 1971.
F. Oort, “Singularities of coarse moduli schemes,” in Séminaire d’Algèbre Paul Dubreil, 29ème année (Paris, 1975–1976), ser. Lecture Notes in Math. Springer, Berlin-New York, 1977, vol. 586, pp. 61–76.
S. Reyes-Carocca y R. E. Rodríguez, “On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties,” Mosc. Math. J., vol. 18, no. 3, pp. 473–489, 2018, doi: 10.17323/1609-4514-2018-18-3-473-489.
M. Schlessinger, “Functors of Artin rings,” Trans. Amer. Math. Soc., vol. 130, pp. 208–222, 1968, doi: 10.2307/1994967.
E. Sernesi, Deformations of algebraic schemes, ser. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 2006, vol. 334.
T. K. Srivastava, “Lifting automorphisms on Abelian varieties as derived autoequivalences,” Arch. Math. (Basel), vol. 116, no. 5, pp. 515–527, 2021, doi: 10.1007/s00013-020-01564-y.
Similar Articles
- Arianna Dal Forno, Ugo Merlone, Optimal Effort in Heterogeneous Agents Population with Global and Local Interactions , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Yuqun Chen, Hongshan Shao, K.P. Shum, Rosso-Yamane Theorem on PBW Basis of ð‘ˆÔ›(ð´É´) , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Takahiro Sudo, A covering dimension for ð¶*-algebras , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Najoua Gamara, Ali Ben Ahmed, Aribi Amine, A New proof of the CR Pohožaev Identity and related Topics , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Gian-Italo Bischi, Michael Kopel, Long Run Evolution, Path Dependence and Global Properties of Dynamic Games: A Tutorial , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 U. Guerrero-Valadez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.