Generalized translation and convolution operators in the realm of linear canonical deformed Hankel transform with applications
-
Hatem Mejjaoli
hatem.mejjaoli@ipest.rnu.tn
-
Firdous A. Shah
fashah@uok.edu.in
-
Nadia Sraieb
nadia.sraieb@fsg.rnu.tn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.105Abstract
Among the class of generalized Fourier transformations, the linear canonical transform is of pivotal importance mainly due to its higher degrees of freedom in lieu of the conventional Fourier and fractional Fourier transforms. This article is a continuation of our recent work "Linear canonical deformed Hankel transform and the associated uncertainty principles, J. Pseudo-Differ. Oper. Appl.(2023), 14:29". Building upon this, we formulate the generalized translation and convolution operators associated with this newly proposed transformation. Besides, the obtained results are invoked to examine and obtain an analytical solution of the generalized heat equation. Finally, we study the heat semigroup pertaining to the generalized heat equation.
Keywords
Mathematics Subject Classification:
L. B. Almeida, “The fractional Fourier transform and time–frequency representations,” IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3084–3091, 1994, doi: 10.1109/78.330368.
S. Ben Saïd and L. Deleaval, “Translation operator and maximal function for the (k,1)-generalized Fourier transform,” J. Funct. Anal., vol. 279, no. 8, 2020, Art. ID 108706, doi: 10.1016/j.jfa.2020.108706.
S. Ben Saïd, T. Kobayashi, and B. Ørsted, “Laguerre semigroup and Dunkl operators,” Compos. Math., vol. 148, no. 4, pp. 1265–1336, 2012, doi: 10.1112/S0010437X11007445.
S. Ben Saïd and S. Negzaoui, “Flett potentials associated with differential-difference Laplace operators,” J. Math. Phys., vol. 63, no. 3, 2022, Art. ID 033504, doi: 10.1063/5.0063053.
M. A. Boubatra, S. Negzaoui, and M. Sifi, “A new product formula involving Bessel functions,” Integral Transforms Spec. Funct., vol. 33, no. 3, pp. 247–263, 2022, doi: 10.1080/10652469.2021.1926454.
R. N. Bracewell, The Fourier transform and its applications, 3rd ed., ser. McGraw-Hill Series in Electrical Engineering. Circuits and Systems. McGraw-Hill Book Co., New York, 1986.
A. Bultheel and H. Martínez-Sulbaran, “Recent developments in the theory of the fractional Fourier and linear canonical transforms,” Bull. Belg. Math. Soc. Simon Stevin, vol. 13, no. 5, pp. 971–1005, 2006.
S. A. J. Collins, “Lens–system diffraction integral written in terms of matrix optics,” Journal of the Optical Society of America, vol. 60, no. 9, pp. 1168–1177, 1970, doi: 10.1364/JOSA.60.001168.
D. Constales, H. De Bie, and P. Lian, “Explicit formulas for the Dunkl dihedral kernel and the (κ,a)-generalized Fourier kernel,” J. Math. Anal. Appl., vol. 460, no. 2, pp. 900–926, 2018.
H. De Bie, “Clifford algebras, Fourier transforms, and quantum mechanics,” Math. Methods Appl. Sci., vol. 35, no. 18, pp. 2198–2228, 2012, doi: 10.1002/mma.2679.
H. De Bie and Y. Xu, “On the Clifford-Fourier transform,” Int. Math. Res. Not. IMRN, no. 22, pp. 5123–5163, 2011, doi: 10.1093/imrn/rnq288.
L. Dhaouadi, J. Sahbani, and A. Fitouhi, “Harmonic analysis associated to the canonical Fourier Bessel transform,” Integral Transforms Spec. Funct., vol. 32, no. 4, pp. 290–315, 2021, doi: 10.1080/10652469.2020.1823977.
C. F. Dunkl, “Differential-difference operators associated to reflection groups,” Trans. Amer. Math. Soc., vol. 311, no. 1, pp. 167–183, 1989, doi: 10.2307/2001022.
N. Faustino and S. Negzaoui, “A novel Schwartz space for the k, 2/n -generalized Fourier transform,” 2025, arXiv:2507.04064.
A. Fitouhi, “Heat“polynomials” for a singular differential operator on(0,∞),” Constr. Approx., vol. 5, no. 2, pp. 241–270, 1989, doi: 10.1007/BF01889609.
S. Ghazouani and J. Sahbani, “Canonical Fourier-Bessel transform and their applications,” J. Pseudo-Differ. Oper. Appl., vol. 14, no. 1, 2023, Art. ID 3, doi: 10.1007/s11868-022-00500-8.
S. Ghazouani, E. A. Soltani, and A. Fitouhi, “A unified class of integral transforms related to the Dunkl transform,” J. Math. Anal. Appl., vol. 449, no. 2, pp. 1797–1849, 2017, doi: 10.1016/j.jmaa.2016.12.054.
S. Ghobber and H. Mejjaoli, “Wavelet multipliers for the linear canonical deformed Hankel transform and applications,” AIMS Math., vol. 10, no. 11, pp. 26958–26993, 2025.
S. Ghobber and H. Mejjaoli, “Wavelet packets analysis for the deformed Hankel transform,” Bol. Soc. Mat. Mex. (3), vol. 31, no. 2, 2025, Art. ID 83, doi: 10.1007/s40590-025-00767-z.
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 4th ed., A. Jeffrey, Ed. Academic Press, New York-London, 1965.
J. J. Healy, M. A. Kutay, H. M. Ozaktas, and J. T. Sheridan, Linear Canonical Transforms: Theory and Applications, ser. Springer Series in Optical Sciences. Springer, 2016, vol. 198, doi: 10.1007/978-1-4939-3028-9.
J. J. Healy andJ. T.Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Processing, vol. 89, no. 4, pp. 641–648, 2009, doi: 10.1016/j.sigpro.2008.10.011.
E. I. Jafarov, N. I. Stoilova, and J. Van der Jeugt, “The su(2)α Hahn oscillator and a discrete Hahn–Fourier transform,” J. Phys. A, vol. 44, 2011, Art. ID 355205, doi: 10.1088/1751-8113/44/35/355205.
D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its application to optics,” Optics Communications, vol. 126, no. 4–6, pp. 207–212, 1996, doi: 10.1016/0030-4018(95)00708-3.
T. R. Johansen, “Weighted inequalities and uncertainty principles for the (k,a)-generalized Fourier transform,” Internat. J. Math., vol. 27, no. 3, 2016, Art. ID 1650019, doi: 10.1142/S0129167X16500191.
H. Mejjaoli, “Spectral theorems associated with the (k,a)-generalized wavelet multipliers,” J. Pseudo-Differ. Oper. Appl., vol. 9, no. 4, pp. 735–762, 2018, doi: 10.1007/s11868-018-0260-1.
H. Mejjaoli, “(k,a)-generalized wavelet transform and applications,” J. Pseudo-Differ. Oper. Appl., vol. 11, no. 1, pp. 55–92, 2020, doi: 10.1007/s11868-019-00291-5.
H. Mejjaoli, “k-Hankel Gabor transform on Rd and its applications to the reproducing kernel theory,” Complex Anal. Oper. Theory, vol. 15, no. 1, 2021, Art. ID 14, doi: 10.1007/s11785-020-01042-x.
H. Mejjaoli, “New uncertainty principles for the (k,a)-generalized wavelet transform,” Rev. Un. Mat. Argentina, vol. 63, no. 1, pp. 239–279, 2022, doi: 10.33044/revuma.2051.
H. Mejjaoli, “Generalized translation operator and uncertainty principles associated with the deformed Stockwell transform,” Rev. Un. Mat. Argentina, vol. 65, no. 2, pp. 375–423, 2023, doi: 10.33044/revuma.2648.
H. Mejjaoli, “Generalized convolution operator associated with the (k,a)-generalized Fourier transform on the real line and applications,” Complex Anal. Oper. Theory, vol. 18, no. 2, 2024, Art. ID 36, doi: 10.1007/s11785-023-01473-2.
H. Mejjaoli, P. Boggarapu, and P. J. K. Senapati, “Deformed Hankel Wigner distribution: Theory and Toeplitz operators,” Integral Transforms and Special Functions, pp. 1–31, 2025, doi: 10.1080/10652469.2025.2508913.
H. Mejjaoli and S. Negzaoui, “Linear canonical deformed Hankel transform and the associated uncertainty principles,” J. Pseudo-Differ. Oper. Appl., vol. 14, no. 2, 2023, Art. ID 29.
H. Mejjaoli and K. Trimèche, “k-Hankel two-wavelet theory and localization operators,” Integral Transforms Spec. Funct., vol. 31, no. 8, pp. 620–644, 2020, doi: 10.1080/10652469.2020.1723011.
M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representations,” J. Mathematical Phys., vol. 12, pp. 1772–1780, 1971.
D. W. Robinson, Basic theory of one-parameter semigroups, ser. Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1982, vol. 2.
F. A. Shah, K. S. Nisar, W. Z. Lone, and A. Y. Tantary, “Uncertainty principles for the quadratic-phase Fourier transforms,” Math. Methods Appl. Sci., vol. 44, no. 13, pp. 10416–10431, 2021.
F. A. Shah and A. Y. Tantary, “Linear canonical Stockwell transform,” J. Math. Anal. Appl., vol. 484, no. 1, 2020, Art. ID 123673.
F. A. Shah and A. Y. Tantary, “Linear canonical ripplet transform: theory and localization operators,” J. Pseudo-Differ. Oper. Appl., vol. 13, no. 4, 2022, Art. ID 45, doi: 10.1007/s11868-022-00476-5.
J. Shi, X. Liu, and N. Zhang, “Generalized convolution and product theorems associated with linear canonical transform,” Signal, Image and Video Processing, vol. 8, no. 5, pp. 967–974, 2014, doi: 10.1007/s11760-012-0348-7.
A. Stern, “Uncertainty principles in linear canonical transform domains and some of their implications in optics,” J. Opt. Soc. Amer. A, vol. 25, no. 3, pp. 647–652, 2008.
E. C. Titchmarsh, Introduction to the theory of Fourier integrals, 3rd ed. Chelsea Publishing Co., New York, 1986.
G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. University Press, 1931. London: Cambridge
R. O. Wells, Jr., Ed., The mathematical heritage of Hermann Weyl, ser. Proceedings of Symposia in Pure Mathematics, vol. 48. American Mathematical Society, Providence, RI, 1988.
J.-F. Zhang and S.-P. Hou, “The generalization of the Poisson sum formula associated with the linear canonical transform,” J. Appl. Math., 2012, Art. ID 102039.
Most read articles by the same author(s)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
Similar Articles
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Raoudha Laffi, Some inequalities associated with a partial differential operator , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Stephen McDowall, Optical Tomography for Media with Variable Index of Refraction , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Toka Diagana, Ahmed Mohamed, Pseudo-almost automorphic solutions to some second-order differential equations , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Fethi Soltani, Reproducing inversion formulas for the Dunkl-Wigner transforms , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 H. Mejjaoli et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










