Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+
-
G. Suresh
drgsk006@kluniversity.in
-
Ch Vasavi
drgsk006@kluniversity.in
-
T.S. Rao
drgsk006@kluniversity.in
-
M.S.N. Murty
drmsn2002@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462014000100004Abstract
This paper deals with obtaining necessary and sufficient conditions for the existence of at least one Ψ-bounded solution for the linear matrix difference equation X(n + 1) = A(n)X(n)B(n) + F(n), where F(n) is a Ψ-summable matrix valued function on Z+. Finally, we prove a result relating to the asymptotic behavior of the Ψ-bounded solutions of this equation on Z+.
Keywords
Similar Articles
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Djairo G. de Figueiredo, An Invitation to Semilinear Elliptic Equations , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Matt Insall, Substitutions of the Independent Variable in Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Lei Ni, A maximum principle for tensors on complete manifolds and its applications , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Bouzid Mansouri, Abdelouaheb Ardjouni, Ahcene Djoudi, Periodicity and stability in neutral nonlinear differential equations by Krasnoselskii‘s fixed point theorem , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- W. Tutschke, Interactions between partial differential equations and generalized analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Paul A. Milewski, The Forced Korteweg–de Vries Equation as a Model for Waves Generated by Topography , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.