On weak concircular symmetries of trans-Sasakian manifolds
-
Shyamal Kumar Hui
shyamal_hui@yahoo.co.in
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000300008Abstract
The object of the present paper is to study weakly concircular symmetric and weakly concircular Ricci symmetric trans-Sasakian manifolds.
Keywords
Most read articles by the same author(s)
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
Similar Articles
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- S. K. Yadav, S. K. Chaubey, D. L. Suthar, Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Akshay Venkatesh, R.T. Naveen Kumar, On some recurrent properties of three dimensional K-contact manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Fortune Massamba, Lightlike geometry of leaves in indefinite Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2011-10-01
How to Cite
[1]
S. Kumar Hui, “On weak concircular symmetries of trans-Sasakian manifolds”, CUBO, vol. 13, no. 3, pp. 141–152, Oct. 2011.
Issue
Section
Articles