Korteweg-de Vries-Burgers equation on a segment
- 
							
								
							
								Elena I. Kaikina
							
							
															
									
									
									ekaikina@matmor.unam.mx
									
								
													
							
						 - 
							
								
							
								Leonardo Guardado-Zavala
							
							
															
									
									
									guardado@ps.itm.mx
									
								
													
							
						 - 
							
								
							
								Hector F. Ruiz-Paredes
							
							
															
									
									
									hruiz@sirio.tsemor.mx
									
								
													
							
						 - 
							
								
							
								S. Juarez Zirate
							
							
															
									
									
									sjzirate@matmor.unam.mx
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100005Abstract
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on the interval (0, 1)

We prove that if the initial data u0 ∈ L2, then there exists a unique solution u ∈ C ([0, ∞) ; L2) ∪ C ((0,∞) ; H1) of the initial-boundary value problem (0.1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0, 1) as t → ∞.
Keywords
Similar Articles
- Martin V¨ath, A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
 - Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
 - J¨orn Steuding, The Fibonacci Zeta-Function is Hypertranscendental , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
 - Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
 - F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
 - Thomas Blesgen, Two-Phase Structures as Singular Limit of a one-dimensional Discrete Model , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 - Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 - Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 - A.A. Martynyuk, Matrix Liapunov‘s Functions Method and Stability Analysis of Continuous Systems , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
 - Giuseppe Gaeta, Further reduction of Poincaré-Dulac normal forms in symmetric systems , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
 
<< < 11 12 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
						










