Korteweg-de Vries-Burgers equation on a segment
-
Elena I. Kaikina
ekaikina@matmor.unam.mx
-
Leonardo Guardado-Zavala
guardado@ps.itm.mx
-
Hector F. Ruiz-Paredes
hruiz@sirio.tsemor.mx
-
S. Juarez Zirate
sjzirate@matmor.unam.mx
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100005Abstract
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on the interval (0, 1)

We prove that if the initial data u0 ∈ L2, then there exists a unique solution u ∈ C ([0, ∞) ; L2) ∪ C ((0,∞) ; H1) of the initial-boundary value problem (0.1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0, 1) as t → ∞.
Keywords
Similar Articles
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Constantin Corduneanu, Some special classes of neutral functional differential equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Ziqi Sun, Conjectures in Inverse Boundary Value Problems for Quasilinear Elliptic Equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- L. K. Kikina, I.P. Stavroulakis, A Survey on the Oscillation of Solutions of First Order Delay Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Frederico Furtado, Felipe Pereira, On the Scale Up Problem for Two-Phase Flow in Petroleum Reservoirs , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Agostino Prástaro, Integral Bordisms and Green Kernels in PDEs , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Qikeng Lu, Global Solutions of Yang-Mills Equation , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Daniel J. Curtin, The Solution of the Cubic Equation: Renaissance Genius and Strife , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.











