Korteweg-de Vries-Burgers equation on a segment
- 
							
								
							
								Elena I. Kaikina
							
							
															
									
									
									ekaikina@matmor.unam.mx
									
								
													
							
						 - 
							
								
							
								Leonardo Guardado-Zavala
							
							
															
									
									
									guardado@ps.itm.mx
									
								
													
							
						 - 
							
								
							
								Hector F. Ruiz-Paredes
							
							
															
									
									
									hruiz@sirio.tsemor.mx
									
								
													
							
						 - 
							
								
							
								S. Juarez Zirate
							
							
															
									
									
									sjzirate@matmor.unam.mx
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100005Abstract
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on the interval (0, 1)

We prove that if the initial data u0 ∈ L2, then there exists a unique solution u ∈ C ([0, ∞) ; L2) ∪ C ((0,∞) ; H1) of the initial-boundary value problem (0.1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0, 1) as t → ∞.
Keywords
Similar Articles
- Laszlo Kapolyi, Ferenc Szidarovszki, Control of Dynamic Oligopsonies with Production factors , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 - Gonzalo Perera, Juan Piccini, Introducción a la modelización matemática de epidemias , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
 - Paolo Piccione, Daniel V. Tausk, Topological Methods for ODE's: Symplectic Differential Systems , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
 - Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
 - Lolimar Diaz, Raúl Naulin, Discrete Systems with Advanced Argument , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
 - Shing So, Recent Developments in Taxicab Geometry , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
 - Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Jairo Bochi, The basic ergodic theorems, yet again , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
 - A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 
<< < 13 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.
						










