Korteweg-de Vries-Burgers equation on a segment
- 
							
								
							
								Elena I. Kaikina
							
							
															
									
									
									ekaikina@matmor.unam.mx
									
								
													
							
						 - 
							
								
							
								Leonardo Guardado-Zavala
							
							
															
									
									
									guardado@ps.itm.mx
									
								
													
							
						 - 
							
								
							
								Hector F. Ruiz-Paredes
							
							
															
									
									
									hruiz@sirio.tsemor.mx
									
								
													
							
						 - 
							
								
							
								S. Juarez Zirate
							
							
															
									
									
									sjzirate@matmor.unam.mx
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100005Abstract
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on the interval (0, 1)

We prove that if the initial data u0 ∈ L2, then there exists a unique solution u ∈ C ([0, ∞) ; L2) ∪ C ((0,∞) ; H1) of the initial-boundary value problem (0.1). We also obtain the large time asymptotic of solution uniformly with respect to x ∈ (0, 1) as t → ∞.
Keywords
Similar Articles
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
 - E. A. Grove, G. Ladas, Periodicity in Nonlinear Difference Equations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
 - Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
 - Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
 - Slawomir Kolodziej, The complex Monge-Ampére equation and methods of pluripotential theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
 - Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 - S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
 - Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
 - Nicolas Raymond, Uniform spectral estimates for families of Schrödinger operators with magnetic field of constant intensity and applications , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
 - Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
 
<< < 9 10 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
						










