Weakly Picard pairs of multifunctions
-
Valeriu Popa
vpopa@ub.ro
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100006Abstract
The purpose of this paper is to present a general answer for the following problem: Let (X, d) be a metric space and T1, T2 : X → P(X) two multifunctions. Determine the metric conditions which imply that (T1, T2) is a weakly Picard pair of multifunctions and T1, T2 are weakly Picard multifunctions , for multifunctions satisfying an implicit contractive condition, generalizing some results from [6] and [7].
Keywords
Most read articles by the same author(s)
- Takashi Noiri, Valeriu Popa, A note on modifications of \(rg\)-closed sets in topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
Similar Articles
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- L. Philo Nithya, Joseph Varghese Kureethara, Independent partial domination , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Ahmed Ali Atash, Maisoon Ahmed Kulib, Extension of exton's hypergeometric function \(K_{16}\) , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Miroslav Haviar, Katarina Kotuľová, Characterizations of kites as graceful graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
<< < 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











