Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation
- 
							
								
							
								Kaïs Ammari
							
							
															
									
									
									kais.ammari@fsm.rnu.tn
									
								
													
							
						 - 
							
								
							
								Georgi Vodev
							
							
															
									
									
									vodev@math.univ-nantes.fr
									
								
													
							
						 
Downloads
Abstract
In this paper we consider a boundary stabilization problem for the transmission Bernoulli-Euler plate equation. We prove uniform exponential energy decay under natural conditions.
Keywords
Most read articles by the same author(s)
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
 - Georgi Vodev, Resonances in the Euclidean Scattering , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
 - Georgi Vodev, Semi-Classical Propagation of Singularities on Riemannian Manifolds without Boundary and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 
Similar Articles
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
 - Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
 - Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
 - A.G. Ramm, One-dimensional inverse scattering and spectral problems , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
 - Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
 - Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
 - Rafael Galeano, Pedro Ortega, John Cantillo, Stationary Boltzmann equation and the nonlinear alternative of Leray-Schauder type , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
 - B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
 - Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
 - M. Arunkumar, Generalized Ulam - Hyers Stability of Derivations of a AQ - Functional Equation , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
 
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
			Download data is not yet available.
		
	Published
																			2009-12-01
																	
				How to Cite
[1]
K. Ammari and G. Vodev, “Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation”, CUBO, vol. 11, no. 5, pp. 39–49, Dec. 2009.
Issue
Section
								Articles
							
						
						










