Towards accurate artificial boundary conditions for nonlinear PDEs through examples
-
Xavier Antoine
Xavier.Antoine@iecn.u-nancy.fr
-
Christophe Besse
Christophe.Besse@math.univ-lille1.fr
-
Jérémie Szeftel
jszeftel@math.princeton.edu
Downloads
Abstract
The aim of this paper is to give a comprehensive review of current developments related to the derivation of artificial boundary conditions for nonlinear partial differential equations. The essential tools to build such boundary conditions are based on pseudodifferential and paradifferential calculus. We present various derivations and compare them. Some numerical results illustrate their respective accuracy and analyze the potential of each technique.
Keywords
Similar Articles
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Nakao Hayashi, Pavel l. Naumkin, Existence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in 3d , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Elena Cordero, Davide Zucco, Strichartz estimates for the Schrödinger equation , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Shigeki Matsutani, Relations of al Functions over Subvarieties in a Hyperelliptic Jacobian , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Agostino Prástaro, Integral Bordisms and Green Kernels in PDEs , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Bruno Costa, Spectral Methods for Partial Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











