Positive Operators and Maximum Principles for Ordinary Differential Equations
- 
							
								
							
								Paul W. Eloe
							
							
															
									
									
									Paul.Eloe@notes.udayton.edu
									
								
													
							
						 
Downloads
Abstract
We show an equivalence between a classical maximum principle in differential equations and positive operators on Banach Spaces. Then we shall exhibit many types of boundary value problems for which the maximum principle is valid. Finally, we shall present extended applications of the maximum principle that have arisen with the continued study of the qualitative properties of Green‘s functions.
Keywords
Most read articles by the same author(s)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
 
Similar Articles
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
 - Fang Li, Zuodong Yang, Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term. , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
 - Cemil Tunc, On the uniform asymptotic stability to certain first order neutral differential equations , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
 - Najja Al-Islam, Diagana space and the gas absorption model , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
 - Ram U. Verma, The ϵ−Optimality conditions for multiple objective fractional programming problems for generalized (Ï, η)−invexity of higher order , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
 - Nicolas Raymond, Uniform spectral estimates for families of Schrödinger operators with magnetic field of constant intensity and applications , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
 - Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
 - Monique Combescure, Circulant Matrices, Gauss Sums and Mutually Unbiased Bases, I. The Prime Number Case , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - Muhammad N. Islam, Youssef N. Raffoul, Bounded Solutions and Periodic Solutions of Almost Linear Volterra Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
 - Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
 
<< < 14 15 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.
						










