Positive Operators and Maximum Principles for Ordinary Differential Equations
- 
							
								
							
								Paul W. Eloe
							
							
															
									
									
									Paul.Eloe@notes.udayton.edu
									
								
													
							
						 
Downloads
Abstract
We show an equivalence between a classical maximum principle in differential equations and positive operators on Banach Spaces. Then we shall exhibit many types of boundary value problems for which the maximum principle is valid. Finally, we shall present extended applications of the maximum principle that have arisen with the continued study of the qualitative properties of Green‘s functions.
Keywords
Most read articles by the same author(s)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
 
Similar Articles
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
 - E. Ballico, Algebraic curves, differential geometry in positive characteristic and error-correcting codes , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
 - Bai-Ni Guo, Three proofs of an identity involving derivatives of a positive definite matrix and its determinant , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
 - M. Caldas, E. Hatir, S. Jafari, T. Noiri, A New Kupka Type Continuity, λ-Compactness and Multifunctions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
 - László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
 - Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
 - B.E. Rhoades, A Fixed Point Theorem for Certain Operators , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
 
<< < 10 11 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
						










