Global Solutions of the Enskog Lattice Equation with Square Well Potential
-
William Greenberg
greenberg@vt.edu
-
Michael Williams
williams@vt.edu
Downloads
Abstract
The nonlinear Enskog equation with a discretized spatial variable is studied in a Banach space of absolutely integrable functions of the velocity variables. The Enskog equation is a kinetic equation of Boltzmann typc which, unlike the Boltzmann equation, is applicable to gases in the moderately dense regime. In this lattice model the generator of free streaming is replaced by a finite difference operator. Conservation laws and positivity are utilized to extend local solutions of a cutoff model to global solutions. Then compactness arguments lead to the existence of weak global solutions of the Enskog lattice equation. Molecular interactions are introduced via a next-nearest neighbor potential, thereby modeling a square well potential.
Keywords
Similar Articles
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Mohamed Bouaouid, Ahmed Kajouni, Khalid Hilal, Said Melliani, A class of nonlocal impulsive differential equations with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Youssef N. Raffoul, Boundedness and stability in nonlinear systems of differential equations using a modified variation of parameters formula , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
<< < 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.