Global Solutions of the Enskog Lattice Equation with Square Well Potential
-
William Greenberg
greenberg@vt.edu
-
Michael Williams
williams@vt.edu
Downloads
Abstract
The nonlinear Enskog equation with a discretized spatial variable is studied in a Banach space of absolutely integrable functions of the velocity variables. The Enskog equation is a kinetic equation of Boltzmann typc which, unlike the Boltzmann equation, is applicable to gases in the moderately dense regime. In this lattice model the generator of free streaming is replaced by a finite difference operator. Conservation laws and positivity are utilized to extend local solutions of a cutoff model to global solutions. Then compactness arguments lead to the existence of weak global solutions of the Enskog lattice equation. Molecular interactions are introduced via a next-nearest neighbor potential, thereby modeling a square well potential.
Keywords
Similar Articles
- Lolimar Diaz, Raúl Naulin, Discrete Systems with Advanced Argument , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Daniel Henry Gottlieb, Topology and the non-existence of magnetic monopoles , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Lahcen Maniar, Extrapolation Theory and Some Applications , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Charalampos Tsitouras, Explicit Runge-Kutta methods for the numerical solution of initial value problems , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
<< < 12 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.