Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability
-
Yaroslav Kurylev
Y.V.Kurylev@lboro.ac.uk
-
Matti Lassas
mjlassas@math.hut.fi
Downloads
Abstract
The paper is devoted to the reconstruction of a compact Riemannian manifold from the Gel'fand boundary spectral data. These data consist of the eigenvalues and the boundary values of the eigenfunctions of the Laplace operator with the Neumann boundary condition. We provide the reconstruction procedure using the geometric variant of the boundary control method. In addition to the uniqueness and reconstruction results, we sketch recent developments in the conditional stability in this problem. These conditions are formulated in terms of some geometric restrictions traditional for the theory of geometric convergence.
Keywords
Similar Articles
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Lahcen Maniar, Extrapolation Theory and Some Applications , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Sorin G. Gal, Remarks on the generation of semigroups of nonlinear operators on p-Fréchet spaces, 0 < p < 1 , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Wolfgang Sproessig, Le Thu Hoai, On a new notion of holomorphy and its applications , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.










