Certain integral Transforms of the generalized Lommel-Wright function
- 
							
								
							
								S.  Haq
							
							
															
									
									
									sirajulhaq007@gmail.com
									
								
													
							
						 - 
							
								
							
								K.S.  Nisar
							
							
															
									
									
									ksnisar1@gmail.com
									
								
													
							
						 - 
							
								
							
								A.H.  Khan
							
							
															
									
									
									ahkhan.amu@gmail.com
									
								
													
							
						 - 
							
								
							
								 D.L.  Suthar
							
							
															
									
									
									dlsuthar@gmail.com
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000100049Abstract
The aim of this article is to establish some integral transforms of the generalized Lommel-Wright functions, which are expressed in terms of Wright Hypergeometric function. Some integrals involving trigonometric, generalized Bessel and Struve functions are also indicated as special cases of our main results.
Keywords
													[1] J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Bound. Value Probl., 95, (2013), pages 9.
[2] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc., 4, (2014), 995-1003.
[3] J. Choi, K.S. Nisar, Certain families of integral formulas involving Struve function, Bol. Soc. Parana. Mat., 37(3), (2019), 27-35.
[4] R. D Ìiaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15, (2007), 179-192.
[5] A. Erde Ìlyi,W. Magnus,F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol.2, McGraw-Hill, New York-Toronto-London (1954).
[6] K.S. Gehlot, and J.C. Prajapati, Fractional Calculus of generalized k-wright function, Journal of Fractional Calculus and Applications, 4, (2013), 283-289.
[7] K.S. Gehlot and S.D. Purohit, Fractional Calculus of K-Bessels function , Acta Universitatis Apulensis., 38, (2014), 273-278.
[8] K.B. Kachhia and J.C. Prajapati, On generalized fractional kinetic equations involving general- ized Lommel-Wright functions, Alexandria Engineering Journal (elsevier) 55, (2016), 2953-2957.
[9] J.P. Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10(1),(2007), 59-74.
[10] Y. Luchko, H. Martinez and J. Trujillo, Fractional Fourier transform and some of its applica- tions, Fract. Calc. Appl. Anal., 11, (2008), ,457-470.
[11] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function, Theory and Applications, Springer, New York (2010).
[12] K.S. Nisar, D. Baleanu and M.M. Al Qurashi, Fractional calculus and application of general- ized Struve function, Springer Plus (2016)5:910,DOI 10.1186/s40064-016-2560-3.
[13] K.S. Nisar, G. Rahman, A. Ghaffar, S.A. Mubeen, new class of integrals involving extended Mittag-Leffler function, J. Fract. Calc. Appl., 9 (1), (2018), 222-231.
[14] S.R. Mondal, K.S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc., 32(1), (2017), 47–53
[15] K.S. Nisar, W.A. Khan, Beta type integral operator associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87(1), 117-125(2018).
[16] G. Rahman, A. Ghaffar, K.S. Nisar, S. Mubben, A new class of integrals involving extended Mittag-Leffler function Journal of Fractional Calculus and Applications, 9(1), (2018), 222-231.
[17] K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain Integral transforms of k-Bessel function, Palest. J. Math., 7(1), (2018), 161-166.
[18] K.S. Nisar, D.L. Suthar, S.D. Purohit, M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc.,20(2), (2017), 261-267.
[19] E.D. Rainville, Special Functions, Macmillan, New York, 1960.
[20] A.K. Rathie, A new generalization of generalized hypergeometric function, Matematiche (Catania), 52(2), (1997), 297-310.
[21] H.M. Srivastava, and H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York,Ellis Horwood, Chichester), 1984.
				[2] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull. Korean Math. Soc., 4, (2014), 995-1003.
[3] J. Choi, K.S. Nisar, Certain families of integral formulas involving Struve function, Bol. Soc. Parana. Mat., 37(3), (2019), 27-35.
[4] R. D Ìiaz and E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15, (2007), 179-192.
[5] A. Erde Ìlyi,W. Magnus,F. Oberhettinger and F.G. Tricomi, Tables of Integral Transforms, Vol.2, McGraw-Hill, New York-Toronto-London (1954).
[6] K.S. Gehlot, and J.C. Prajapati, Fractional Calculus of generalized k-wright function, Journal of Fractional Calculus and Applications, 4, (2013), 283-289.
[7] K.S. Gehlot and S.D. Purohit, Fractional Calculus of K-Bessels function , Acta Universitatis Apulensis., 38, (2014), 273-278.
[8] K.B. Kachhia and J.C. Prajapati, On generalized fractional kinetic equations involving general- ized Lommel-Wright functions, Alexandria Engineering Journal (elsevier) 55, (2016), 2953-2957.
[9] J.P. Konovska, Theorems on the convergence of series in generalized Lommel-Wright functions. Fract. Calc. Appl. Anal., 10(1),(2007), 59-74.
[10] Y. Luchko, H. Martinez and J. Trujillo, Fractional Fourier transform and some of its applica- tions, Fract. Calc. Appl. Anal., 11, (2008), ,457-470.
[11] A.M. Mathai, R.K. Saxena and H.J. Haubold, The H-function, Theory and Applications, Springer, New York (2010).
[12] K.S. Nisar, D. Baleanu and M.M. Al Qurashi, Fractional calculus and application of general- ized Struve function, Springer Plus (2016)5:910,DOI 10.1186/s40064-016-2560-3.
[13] K.S. Nisar, G. Rahman, A. Ghaffar, S.A. Mubeen, new class of integrals involving extended Mittag-Leffler function, J. Fract. Calc. Appl., 9 (1), (2018), 222-231.
[14] S.R. Mondal, K.S. Nisar, Certain unified integral formulas involving the generalized modified k-Bessel function of first kind, Commun. Korean Math. Soc., 32(1), (2017), 47–53
[15] K.S. Nisar, W.A. Khan, Beta type integral operator associated with Wright generalized Bessel function, Acta Math. Univ. Comenian. (N.S.) 87(1), 117-125(2018).
[16] G. Rahman, A. Ghaffar, K.S. Nisar, S. Mubben, A new class of integrals involving extended Mittag-Leffler function Journal of Fractional Calculus and Applications, 9(1), (2018), 222-231.
[17] K.S. Nisar, W.A. Khan and A.H. Abusufian, Certain Integral transforms of k-Bessel function, Palest. J. Math., 7(1), (2018), 161-166.
[18] K.S. Nisar, D.L. Suthar, S.D. Purohit, M. Aldhaifallah, Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc.,20(2), (2017), 261-267.
[19] E.D. Rainville, Special Functions, Macmillan, New York, 1960.
[20] A.K. Rathie, A new generalization of generalized hypergeometric function, Matematiche (Catania), 52(2), (1997), 297-310.
[21] H.M. Srivastava, and H.L. Manocha, A treatise on generating functions, John Wily and Sons (Halsted Press, New York,Ellis Horwood, Chichester), 1984.
Similar Articles
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
 - Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
 - Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
 - George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
 - K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
 - Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
 - V. Seenivasan, G. Balasubramanian, G. Thangaraj, Somewhat Fuzzy Semi ð›¼-Irresolute Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
 - G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
 - Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
 - S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
 
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
			Download data is not yet available.
		
	Published
																			2019-04-01
																	
				How to Cite
[1]
S. . Haq, K. . Nisar, A. . Khan, and . D. . Suthar, “Certain integral Transforms of the generalized Lommel-Wright function”, CUBO, vol. 21, no. 1, pp. 49–60, Apr. 2019.
Issue
Section
								Articles
							
						
						
	










